3112
J. Am. Chem. Soc. 2000, 122, 3112-3117
Structure and Thermal Reactivity of a Novel Pd(0) Metalloenediyne
Nicole L. Coalter,† Thomas E. Concolino,‡ William E. Streib,† Chris G. Hughes,†
Arnold L. Rheingold,‡ and Jeffrey M. Zaleski*,†
Contribution from the Department of Chemistry, Indiana UniVersity, Bloomington, Indiana 47405, and
Department of Chemistry and Biochemistry, UniVersity of Delaware, Newark, Delaware 19716
ReceiVed December 17, 1999
Abstract: We report the X-ray diffraction structure and thermal reactivity of the metalloenediyne compound
bis(1,2-bis(diphenylphosphinoethynyl)benzene)palladium(0) (Pd(dppeb)2, 1). The structure of 1 features a
tetrahedral Pd(0) center with four phosphorus atoms from two chelating ligands. The PsPdsP bond angles
nearly match the idealized 109.5° geometry expected for a d10 metal center in a tetrahedral ligand field. The
tetrahedral geometry of the metal center forces the alkyne termini separation of the enediyne ligand to a distance
of 3.47 Å, which results in a thermally stable compound at room temperature. However, at 115 °C 1 exhibits
solvent-dependent reactivity. In o-fluorotoluene, 1 decomposes via ligand dissociation, while in o-
dichlorobenzene, carbon-halide bond activation of solvent occurs leading to the oxidative addition product
trans-Pd((2-chlorophenyl)diphenylphosphine)2Cl2 and free (2-chlorophenyl)diphenylphosphine. The thermal
reactivity of 1 is markedly more endothermic (44 kcal/mol) than that of the known Pd(dppeb)Cl2 analogue
(12.3 kcal/mol). The diminished reactivity can be attributed to two factors: the increased alkyne termini
separation in 1 (3.47 vs 3.3 Å) due to the metal-mandated tetrahedral geometry of the Pd(0) center, and the
resistance of the Pd(0) to adopting a planar transition state geometry to promote Bergman cyclization. Overall
this study demonstrates that metal binding can impose structural consequences upon the enediyne ligand governed
by the oxidation state and corresponding ligand field geometry of the metal center.
Introduction
molecules.26 The key feature of these natural products is the
1,5-diyne-3-ene unit that undergoes Bergman cyclization to form
the potent 1,4-phenyl diradical intermediate27,28 in the presence
of biological reducing equivalents. The singlet diradical inter-
mediate is proposed to be the species responsible for the DNA-
cleaving activity of the enediynes,29 which occurs via H-atom
abstraction from the deoxyribose ring of the DNA backbone.30
Ironically, it is this inherently facile reactivity that promotes
toxicity problems in the pharmacological applications of these
compounds.
The discoveries of the unique structural motifs1-3 and striking
antitumor activities of the enediyne antibiotics have spawned
extensive interest in the mechanisms4-25 of these intriguing
* To whom correspondence should be addressed. E-mail: zaleski@
indiana.edu.
† Indiana University.
‡ University of Delaware.
(1) Lee, M. D.; Dunne, T. S.; Chang, C. C.; Siegal, M. M.; Morton, G.
O.; Ellestad, G. A.; McGahren, W. J.; Borders, D. B. J. Am. Chem. Soc.
1992, 114, 985.
(2) Golik, J.; Clardy, J.; Dubay, G.; Greoenewold, G.; Kawaguchi, H.;
Konishi, M.; Krishnan, B.; Ohkuma, H.; Saitoh, K.; Doyle, T. W. J. Am.
Chem. Soc. 1987, 109, 3461.
(3) Golik, J.; Clardy, J.; Dubay, G.; Greoenewold, G.; Kawaguchi, H.;
Konishi, M.; Krishnan, B.; Ohkuma, H.; Saitoh, K.; Doyle, T. W. J. Am.
Chem. Soc. 1987, 109, 3462.
(15) Depew, K. M.; Zeman, S. M.; Boyer, S. H.; Denhart, D. J.; Ikemoto,
N.; Danishefsky, S. J.; Crothers, D. M. Angew. Chem., Int. Ed. Engl. 1996,
35, 2797.
(16) Nicolaou, K. C.; Tsay, S.-C.; Suzuki, T.; Joyce, G. F. J. Am. Chem.
Soc. 1992, 114, 7555.
(4) Takahashi, T.; Tanaka, H.; Yamada, H.; Matsumoto, T.; Sugiura, Y.
Angew. Chem., Int. Ed. Engl. 1996, 35, 1835.
(5) Nicolaou, K. C.; Smith, A. L.; Wenderborn, S. V.; Hwang, C.-K. J.
Am. Chem. Soc. 1991, 113, 3106.
(6) Nicolaou, K. C.; Dai, W.-M.; Wendeborn, S. V.; Smith, A. L.;
Torisawa, Y.; Maligres, P.; Hwang, C.-K. Angew. Chem., Int. Ed. Engl.
1991, 30, 1032.
(7) Nicolaou, K. C.; Zuccarello, G.; Riemer, C.; Estevez, V. A.; Dai,
W.-M. J. Am. Chem. Soc. 1992, 114, 7360.
(8) Nicolaou, K. C.; Ogawa, Y.; Zuccarello, G.; Kataoke, H. J. Am. Chem.
Soc. 1988, 110, 7247.
(9) Zein, N.; Sinha, A. M.; McGahren, W. J.; Ellestad, G. A. Science
1988, 240, 1198-1201.
(10) Lee, M. D.; Dunne, T. S.; Siegal, M. M.; Chang, C. C.; Morton, G.
O.; Borders, D. B. J. Am. Chem. Soc. 1987, 109, 3464.
(11) Lee, M. D.; Dunne, T. S.; Chang, C. C.; Ellestad, G. A.; Siegal, M.
M.; Morton, G. O.; McGahren, W. J.; Borders, D. B. J. Am. Chem. Soc.
1987, 109, 3466.
(17) Nicolaou, K. C.; Smith, A. L. Acc. Chem. Res. 1992, 25, 497.
(18) Walker, S.; Landovitz, R.; Ding, W. D.; Ellestad, G. A.; Kahne, D.
Proc. Natl. Acad. Sci. U.S.A. 1992, 89, 4608.
(19) Li, H.; Zeng, Z.; Estevez, V. A.; Baldenius, K. U.; Nicolaou, K.
C.; Joyce, G. F. J. Am. Chem. Soc. 1994, 116, 3709.
(20) Liu, C.; Smith, B. M.; Ajito, K.; Komatsu, H.; Gomez-Paloma, L.;
Li, T.; Theodorakis, E. A.; Nicolaou, K. C.; Vogt, P. K. Proc. Natl. Acad.
Sci. U.S.A. 1996, 93, 940.
(21) Nicolaou, K. C.; Li, T.; Nakada, M.; Hummel, C. W.; Hiatt, A.;
Wrasidlo, W. Angew. Chem., Int. Ed. Engl. 1994, 33, 183.
(22) Ho, S. N.; Boyer, S. H.; Schreiber, S. L.; Danishefsky, S. J.; Crabtree,
R. G. Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 9203.
(23) Shair, M. D.; Yoon, T.; Chou, T. C.; Danishefsky, S. J. Angew.
Chem., Int. Ed. Engl. 1994, 33, 2477.
(24) Nicolaou, K. C.; Smith, B. M.; Ajito, K.; Komatsu, H.; Gomez-
Paloma, L.; Tor, Y. J. Am. Chem. Soc. 1996, 118, 2303.
(25) Nicolaou, K. C.; Dai, W.-M. Angew. Chem., Int. Ed. Engl. 1991,
30, 1387.
(12) Aiyar, J.; Danishefsky, S. J.; Crothers, D. M. J. Am. Chem. Soc.
1992, 114, 7552.
(13) Aiyar, J.; Hitchcock, S. A.; Denhart, D.; Liu, K. K. C.; Danishefsky,
S. J.; Crothers, D. M. Angew. Chem., Int. Ed. Engl. 1994, 33, 855.
(14) Drak, J.; Iwasawa, N.; Danishefsky, S.; Crothers, D. M. Proc. Natl.
Acad. Sci. U.S.A. 1991, 88, 7464.
(26) Smith, A. L.; Nicolaou, K. C. J. Med. Chem. 1996, 39, 2103.
(27) Jones, R.; Bergman, R. G. J. Am. Chem. Soc. 1972, 94, 660.
(28) Bergman, R. G. Acc. Chem. Res. 1973, 6, 25.
(29) Schreiner, P. R. J. Am. Chem. Soc. 1998, 120, 4184.
(30) Paloma, L. G.; Smith, J. A.; Chazin, W. J.; Nicolaou, K. C. J. Am.
Chem. Soc. 1994, 116, 3697.
10.1021/ja9944094 CCC: $19.00 © 2000 American Chemical Society
Published on Web 03/17/2000