favored conformation of the N-tigloyl fragment is syn with
respect to the oxazolidine ring, analogous to the N-acryloyl-
oxazolidines described by Kanemasa and Porter,15 the double
bond is twisted with respect to the carbonyl group to avoid
steric interactions with the substituent at the 4 position in
the oxazolidine ring (Scheme 2). This conformational
s-cis cannot be accommodated with the auxiliary for steric
reasons.16 Semiempirical calculations (cf. Supplementary
Information) confirm this expectation for the tiglic amides
(S)-1 and give values of 56° (conformer A in Scheme 2)
and 249° (conformer B in Scheme 2) for the dihedral angle
between the double bond and the carbonyl group in their
lowest energy conformations. The energy difference amounts
to only ca. 1.4 kcal/mol in favor of conformer B due to the
destabilization of A with respect to B on account of the steric
interaction between the H-4 atom in the oxazolidine ring and
the R-methyl group of the tigloyl moiety. On the basis of
the Curtin-Hammett principle,17 from this relatively low
energy difference in the ground-state conformations, no
significant diastereoselective control would be expected.
Moreover, both π faces of the double bond are equally well
shielded by the chiral auxiliary torward the attack of the
oxidant in these two conformers; thus, the Si face is shielded
in conformer B and the Re face in conformer A.
Scheme 2
The opposite and high diastereoselectivities observed for
DMD and m-CPBA may be rationalized in terms of the
energy differences between the unlike and like transition
structures for these oxygen-transfer processes, i.e., Cqlk versus
Cqul for DMD and Dqlk versus Dqul for m-CPBA, as depicted
in Scheme 2. The Cq transition structure suggests that the
lk
DMD attack on the olefin is disfavored by the steric
interactions between the H-4 atom in the oxazolidine ring
and the R-methyl group of the tiglate moiety. These steric
repulsions are absent in the Cq transition structure, which
ul
would implicate a pronounced unlike diastereoselectivity, as
is observed experimantally (Table 1, entries 1-3). In fact,
these steric interactions should become more important in
the transition structure Cq compared to the ground-state
lk
conformer A of the amide (S)-1 due to the partial rehybrid-
ization of the olefinic carbon atoms during the epoxidation
trajectory. That the H-4/R-Me steric interaction appears to
be decisive is suggested by the experimental fact that the
(8) (a) Henbest, H. B.; Wilson, R. A. L. J. Chem. Soc. 1957, 1958-
1965. (b) Narula, A. S. Tetrahedron Lett. 1981, 22, 2017-2020. (c) Adam,
W.; Smerz, A. K. Tetrahedron 1995, 51, 13039-13044. (d) Adam, W.;
Paredes, R.; Smerz, A. K.; Veloza, L. A. Eur. J. Org. Chem. 1998, 349-
354.
(9) Lucero, M. J.; Houk, K. N. J. Org. Chem. 1998, 63, 6973-6977.
(10) Adam, W.; Hadjiarapoglou, L. In Topics of Current Chemistry;
Herrmann, W. A., Ed.; Springer-Verlag: Berlin, Heidelberg, 1993; Vol.
164, pp 45-62.
(11) Adam, W.; Wirth, T.; Pastor, A.; Peters, K. Eur. J. Org. Chem.
1998, 501, 1-506.
(12) Shao, H.; Rueter, J. K.; Goodman, M. J. Org. Chem. 1998, 63,
5240-5244.
(13) (a) Huang, Z.; He, Y.-B.; Raynor, K.; Tallent, M.; Reisine, T.;
Goodman, M. J. Am. Chem. Soc. 1992, 114, 9390-9401. (b) He, Y.-B.;
Huang, Z.; Raynor, K.; Reisine, T.; Goodman, M. J. Am. Chem. Soc. 1993,
115, 8066-8072.
orientation of the double bond with respect to the carbonyl
group is general for methacrylate and tiglate derivatives of
imides and amides since the planar rotamers (s-trans and
(14) The like and unlike stereochemical descriptors are defined in Seebach
and Prelog (Seebach, D.; Prelog, V. Angew. Chem., Int. Ed. Engl. 1982,
21, 654-660) and have been applied to the transition structures.
(15) (a) Kanemasa, S.; Onimura, K. Tetrahedron 1992, 48, 8631-8644.
(b) Porter, N. A.; Rosenstein, I. J.; Breyer, R. A.; Bruhnke, J. D.; Wu,
W.-X.; McPhail, A. T. J. Am. Chem. Soc. 1992, 114, 7664-7676.
(16) (a) Oppolzer, W.; Mills, R. J.; Re´glier, M. Tetrahedron Lett. 1986,
27, 183-186. (b) Oppolzer, W.; Barras, J.-P. HelV. Chim. Acta 1987, 70,
1666-1675. (c) Curran, D. P.; Heffner, T. A. J. Org. Chem. 1990, 55,
4585-4595. (d) Kim, B. H.; Curran, D. P. Tetrahedron 1993, 49, 293-
318.
(7) (a) Bovicelli, P.; Lupattelli, P.; Mincione, E.; Prencipe, T.; Curci, R.
J. Org. Chem. 1992, 57, 2182-2184. (b) Adam, W.; Bru¨nker, H.-G.; Kumar,
A. S.; Peters, E.-M.; Peters, K.; Schneider, U.; Schnering, H. G. J. Am.
Chem. Soc. 1996, 118, 1899-1905. (c) Murray, R. W.; Singh, M.; Williams,
B. L.; Moncrieff, H. M. J. Org. Chem. 1996, 61, 1830-1841. (d) Adam,
W.; Paredes, R.; Smerz, A. K.; Veloza, L. A. Liebigs Ann./Recueil 1997,
547-551. (e) Yang, D.; Jiao, G.-S.; Yip, Y.-C.; Wong, M.-K. J. Org. Chem.
1999, 64, 1635-1639.
(17) Eliel, E. L.; Wilen, S. H. Stereochemistry of Organic Commpounds;
John Wiley & Sons: New York, 1994; Chapter 10, pp 647-655.
Org. Lett., Vol. 2, No. 8, 2000
1021