Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
B. M. Trost, Z. T. Ball, T. Jꢀge, J. Am. Chem. Soc. 2002, 124
6
7
the reaction rate of each substrate separately. As shown in
scheme 4, when the reaction was stopped after 4 h with 1 mol%
catalyst, 3-phenyl-propargyl alcohol 1m exhibited the highest
rate. To the contrary, the reaction rate of 3-substituted
protected propargylamine 1g was the lowest. It is notable that
the reaction rate of 2-butylphenylacetylene 1e is distinctly
higher than that of 1,2-diphenylacetylene 1a, which is probab-
ly due to the electron-richer feature of the former.
7922-7923.
For representative examples, see: a) DHO. I:L1in0d.1l0a3r9,/CH7eClvC.0C12h2i8mD.
Acta 1952, 35
, 446-450; b) B. M. Trost, R. Braslau,
Tetrahedron Lett. 1989, 30, 4657-4660; c) L. L. Wei, L. M. Wei,
W. B. Pan, S. P. Leou, M. J. Wu, Tetrahedron Lett. 2003, 44
1979-1981; d) M. Crespo-Quesada, F. Cardenas-Lizana, A.
Dessimoz, L. KiwiMinsker, ACS Catal. 2012, , 1773-1786; e)
R. M. Drost, T. Bouwens, N. P. van Leest, B. Bruin, C. J.
Elsevier, ACS Catal. 2014, , 1349-1357; f) J. Zhong, Q. Liu, C.
,
2
4
Control experiments were also conducted using deuterated
methanol and water to determine whether the alcohol solvent
and water serve as hydrogen donors. As shown in Scheme 5,
no deuterated products were observed when deuterated
methanol or water was used as co-solvents (Scheme 5a-5b).
This result suggests that alcohol solvent and water do not
serve as hydrogen donors. Furthermore, when the reaction
was conducted using D2, for all of the three products (2a’, 3a’,
and 4a’), the deuterium incorporation was higher than 95%
(Scheme 5c). As a result, H2 was considered to be the sole
hydrogen source and the transfer hydrogenation mechanism
was ruled out.
Wu, Q. Meng, X. Gao, Z. Li, B. Chen, C. Tunga, L. Wu, Chem.
Commun., 2016, 52, 1800-1803; g) S. Yang, C. Cao, L. Peng, J.
Zhang, B. Han, W. Song, Chem. Commun., 2016, 52, 3627-
3630; h) T. Mitsudome, T. Urayama, K. Yamazaki, Y. Maehara,
J. Yamasaki, K. Gohara, Z. Maeno, T. Mizugaki, K. Jitsukawa, K.
Kaneda, ACS Catal. 2016, 6, 666-670.
8
9
For representative example, see: R. R. Schrock, J. A. Osborn, J.
Am. Chem. Soc. 1976, 98, 2143-2147.
For representative examples, see: a) L. Shao, X. Huang, D.
Teschner, W. Zhang, ACS Catal. 2014, 4, 2369-2373; b) G. Li,
R. Jin, J. Am. Chem. Soc. 2014, 136, 11347-11354. c) E.
Vasilikogiannaki, I. Titilas, G. Vassilikogiannakis, M. Stratakis,
Chem. Commun. 2015, 51, 2384-2387; d) T. Mitsudome, M.
Yamamoto, Z. Maeno, T. Mizugaki, K. Jitsukawa, K. Kaneda, J.
Am. Chem. Soc. 2015, 137, 13452-11354; e) S. Liang, G. B.
Hammond, B. Xu, Chem. Commun., 2016, 52, 6013-6016.
10 For representative example, see: M. Niu, Y. Wang, W. Li, J.
Conclusions
Jiang, Z. Jin, Catal. Commun. 2013, 38, 77-81.
In conclusion,
a
cobalt-catalyzed highly (Z)-selective 11 For representative examples, see: a) C. A. Brown, V. K. Ahuja,
J. Chem. Soc., Chem. Commun. 1973, 15, 553-554; b) J. A.
Schreifels, P. C. Maybury, W. E. Swartz, J. Org. Chem., 1981,
semihydrogenation of alkynes using molecular H2 was
developed. Notably, this reaction system is very practical using
commercially available and cheap cobalt precursor and
ethylenediamine ligand. A variety of (Z)-alkenes were obtained
in moderate to excellent reactivities and selectivities. It was
found that the ethylenediamine ligand is crucial in determining
the selectivity. The reactivity order of each kind of substrate
was determined by measuring the reaction rate separately.
And control experiments revealed that H2 was the sole
hydrogen source. Further studies are underway to reveal the
mechanism of this cobalt-catalyzed semihydrogenation.
46, 1263-1269; c) G. Zhu, X. Lu, J. Org. Chem., 1995, 60
,
1087-1089; d) F. Studt, F. Abild-Pedersen, T. Bligaard, R. Z.
Sørensen, C. H. Christensen, J. K. Nørskov, Science 2008, 320
1320-1322; e) E. Richmond, J. Moran, J. Org. Chem. 2015, 80
6922-6929;
,
,
12 For representative examples, see: a) K. Semba, T. Fujihara, T.
Xu, J. Terao, Y. Tsuji, Adv. Synth. Catal. 2012, 354, 1542-1550;
b) N. O. Thiel, J. F. Teichert, Org. Biomol. Chem., 2016, 14
,
10660–10666; c) F. Pape, N. O. Thiel, J. F. Teichert, Chem. Eur.
J. 2015, 21, 15934 – 15938; d) A. M Whittaker, G. Lalic, Org.
Lett., 2013, 15, 1112–1115.
13 For representative example, see: H. S. La Pierre, J. Arnold, F.
D. Toste, Angew. Chem., Int. Ed., 2011, 50, 3900-3903.
14 For representative example, see: M. Sodeoka, M. Shibasaki, J.
Org. Chem. 1985, 50, 1147-1149.
This work was supported by the grant from Wuhan University
(203273463, 203600400006), the support of the Important Sci-Tech
Innovative Project of Hubei Province (2015ACA058), the National
Natural Science Foundation of China (Grant No. 21372179, 15 For representative examples, see: a) T. L. Gianetti, N. C.
Tomson, J. Arnold, R. G. Bergman, J. Am. Chem. Soc. 2011,
133, 14904-14907; b) Y. Satoh, Y. Obora, J. Org. Chem. 2011,
76, 8569–8573.
21432007, 21502145) and Natural Science Foundation of Hubei
Province (Grant No. 2016CFB449).
16 For representative examples, see: a) L. Ilies, T. Yoshida, E.
Nakamura, J. Am. Chem. Soc., 2012, 134, 16951-16954; b) D.
Srimani, Y. Diskin-Posner, Y. Ben-David and D. Milstein,
Angew. Chem., Int. Ed., 2013, 52, 14131-14134.
17 R. Chinchilla, C. Najera, Chem. Rev., 2014, 114, 1783-1826.
18 a) P. J. Chirik, Acc. Chem. Res. 2015, 48, 1687-1695; b) R. H.
Morris, Acc. Chem. Res. 2015, 48, 1494-1502. (c) T. Zell, D.
Milstein, Acc. Chem. Res. 2015, 48, 1979-1994.
Notes and references
1
2
a) J. Burwell, L. Robert, Chem. Rev. 1957, 57, 895-934; b) E. N.
Marvell, T. Li, Synthesis 1973, 8, 487; c) C. Oger, L. Balas, T.
Durand, J. Galano, Chem. Rev. 2013, 113, 1313-1350; d) A. M.
Kluwer, T. S. Koblenz, T. Jonischkeit, K. Woelk, C. J. Elsevier, J.
Am. Chem. Soc. 2005, 127, 15470-15480.
a) G. Wittig, U. Schꢀllkopf, Chem. Ber. 1954, 87, 1318-1330; b)
B. E. Maryanoff, A. B. Reitz, Chem. Rev. 1989, 89, 863-927; c)
19 a) S. Fu, N.-Y. Chen, X. Liu, Z. Shao, S.-P. Luo, Q. Liu, J. Am.
Chem. Soc. 2016, 138, 8588-8594.
20 K. Tokmic, A. R. Fout, J. Am. Chem. Soc. 2016, 138, 13700-
13705.
W. S. Wadsworth, W. D. Emmons, J. Am. Chem. Soc. 1961, 83
1733-1738.
,
21 F. Chen, C. Kreyenschulte, J. Radnik, H. Lund, A.-E. Surkus, K.
3
4
5
D. J. Peterson, J. Org. Chem. 1968, 33, 780-784.
P. R. Blakemore, J. Chem. Soc. 2002, 2563-2585.
a) B. K. Keitz, K. Endo, P. R. Patel, M. B. Herbert, R. H. Grubbs,
J. Am. Chem. Soc. 2012, 134, 693-699; b) F. Z. Dꢀrwald, In
Handbook of Metathesis. Vol. 1; R. H. Grubbs, Ed.; Wiley-
VCH Verlag: Hoboken, NJ, 2004; Vol. 43, pp 395-396.
Junge, M. Beller, ACS Catal. 2017, 7, 1526-1532.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins