Page 5 of 7
Journal of the American Chemical Society
Chem. Sci. 2017, 8, 3121–3125. (b) Boyington, A. J.; Riu, M. L. Y.;
Author Contributions
Jui, N. T. Anti-Markovnikov Hydroarylation of Unactivated Olefins
via Pyridyl Radical Intermediates. J. Am. Chem. Soc. 2017, 139, 6582–
6585. (c) Seath, C. P.; Vogt, D. B.; Xu, Z.; Boyington, A. J.; Jui, N. T.
Radical Hydroarylation of Functionalized Olefins and Mechanistic
Investigation of Photocatalytic Pyridyl Radical Reactions. J. Am.
Chem. Soc. 2018, 140, 15525–15534. (d) Boyington, A. J.; Seath, C.
P.; Zearfoss, A. M.; Xu, Z.; Jui, N. T. Catalytic Strategy for
Regioselective Arylethylamine Synthesis. J. Am. Chem. Soc. 2019,
141, 4147–4153.
(20) Giese, B. Formation of CC Bonds by Addition of Free
Radicals to Alkenes. Angew. Chem. Int. Ed. 1983, 22, 753–764.
(21) (a) Crich, D; Hwang, J.-T. Stannane-Mediated Radical
Addition to Arenes. Generation of Cyclohexadienyl Radicals and
Increased Propagation Efficiency in the Presence of Catalytic
Benzeneselenol. J. Org. Chem. 1998, 63, 2765–2770. (b) Crich, D.;
Sannigrahi, M. Rapid Assembly of Tetrahydrodibenzofurans and
Tetrahydrocarbazoles from Benzene and o-Iodophenols and o-
Iodoanilines: Reductive Radical Arylation of Benzene in Action.
Tetrahedron, 2002, 58, 3319–3322. (c) Crich, D.; Hao, X.; Lucas, M.
A. Inhibition of Stannane-Mediated Radical Rearrangements by a
Recoverable, Minimally Fluorous Selenol. Org. Lett. 1999, 1, 269–271.
(d) Ohno, H.; Iwasaki, H.; Eguchi, T.; Tanaka, T. The First
Samarium(II)-Mediated Aryl Radical Cyclisation Onto an Aromatic
Ring. Chem. Comun. 2004, 2228–2229. (e) Iwasaki, H.; Eguchi, T.;
Tsutsui, N.; Ohno, H.; Tanaka, T. Samarium(II)-Mediated
Spirocyclization by Intramolecular Aryl Radical Addition onto an
Aromatic Ring. J. Org. Chem. 2008, 73, 7145–7152.
(22) Smith, M. B.; March, J. Addition to Carbon-Carbon Multiple
Bonds. In March’s Advanced Organic Chemistry: Reactions,
Mechanisms, and Structure, 6th ed; John Wiley & Sons, Inc.: Hoboken,
New Jersey, 2007; pp 999-1250.
(23) Kwan, E. E.; Zeng, Y.; Besser, H. A.; Jacobsen, E. N.
Concerted Nucleophilic Aromatic Substitutions. Nat. Chem. 2018, 10,
917–923.
(24) Galabov, B.; Nalbantova, D.; Schleyer, P. V. R.; Schaefer,
H. F. Electrophilic Aromatic Substitution: New Insights into an Old
Class of Reactions. Acc. Chem. Res. 2016, 49, 1191–1199.
(25) Proctor, R. S. J; Phipps, R. Recent Advances in Minisci-
Type Reactions. Angew. Chem. Int. Ed. 2019, 58, 13666–13699.
(26) Terao, Y.; Takahashi, M.; Hara, R.; Hidaka, K.; Furukawa,
H.; Yamasaki, T.; Kasai, S. Takeda Pharmaceutical Company Limited.
IP6K Inhibitors. International Publication No. WO 2018/182051 A1.
October, 4, 2018.
(27) Sakamoto, T.; Moriya, M.; Haga, Y.; Takahashi, T.; Shibata,
T.; Okamoto, O.; Nonoshita, K.; Kitazawa, H.; Hidaka, M.; Gomori,
A.; Iwaasa, H.; Ishihara, A.; Kanatani, A.; Fukami, T.; Gao, Y. D.;
MacNeil, D. J.; Yang, L. Identification of Novel and Orally Active
Spiroindoline NPY Y5 Receptor Antagonists. Bioorganic Med. Chem.
Lett. 2009, 19 (6), 1564–1568.
1
2
3
4
5
6
7
8
‡A. R. Flynn and K. A. McDaniel contributed equally to this
work; the order was assigned alphabetically.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENT
Financial support for this work was provided, in part, by Emory
University and the National Institutes of Health (GM129495), and
NMR data were collected under support of the National Science
Foundation (CHE-1531620). We thank Colin Swenson for his
help in collecting high resolution mass data.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
REFERENCES
(1)
Magano, J.; Dunetz, J. R. Large-Scale Applications of
Transition Metal-Catalyzed Couplings for the Synthesis of
Pharmaceuticals. Chem. Rev. 2011, 111, 2177–2250.
(2)
Watson, W. Transition Metal-Catalyzed Couplings in
Process Chemistry: Case Studies from the Pharmaceutical Industry.
Org. Process Res. Dev. 2014, 18, 277.
(3)
Devendar, P.; Qu, R.-Y.; Kang, W.-M.; He, B.; Yang, G.-F.
Palladium-Catalyzed Cross-Coupling Reactions: A Powerful Tool for
the Synthesis of Agrochemicals. J. Agric. Food Chem. 2018, 66, 8914–
8934.
(4)
Ruiz-Castillo, P.; Buchwald, S. L. Applications of
Palladium-Catalyzed C–N Cross-Coupling Reactions. Chem. Rev.
2016, 116, 12564–12649.
(5)
Kingwell, K. Exploring the Third Dimension. Nat. Rev.
Drug Discov. 2009, 8, 931.
(6)
Lovering, F.; Bikker, J.; Humblet, C. Escape from Flatland:
Increasing Saturation as an Approach to Improving Clinical Success. J.
Med. Chem. 2009, 52, 6752–6756.
(7)
Von Ragué Schleyer, P.; Puhlhofer, F. Recommendations
for the Evaluation of Aromatic Stabilization Energies. Org. Lett. 2002,
4, 2873–2876.
(8)
Catalysis: A Review. Catal. Rev. 1994, 36, 75–123.
(9) Birch, A. J. Reduction by Dissolving Metals. Part I. J. Chem.
Stanislaus, A.; Cooper, B. H. Aromatic Hydrogenation
Soc. 1944, 430.
(10)
Rabideau, P. W. The Birch Reduction of Aromatic
Compounds. Org. React. 1992, 42, 1–334
(11) Hudlicky, T.; Olivo, H. F.; McKibben, B. Microbial
Oxidation of Aromatics in Enantiocontrolled Synthesis. 3. 1 Design of
Amino Cyclitols (Exo-Nitrogenous) and Total Synthesis of (+)-
Lycoricidine via Acylnitrosyl Cycloaddition to Polarized 1-Halo-1, 3-
Cyclohexadienes. J. Am. Chem. Soc. 1994, 116, 5108–5115.
(12) Boyd, D. R.; Bugg, T. D. H. Arene Cis-Dihydrodiol
Formation: From Biology to Application. Org. Biomol. Chem. 2006, 4,
181–192.
(13) Pouységu, L.; Deffieux, D.; Quideau, S. Hypervalent Iodine-
Mediated Phenol Dearomatization in Natural Product Synthesis.
Tetrahedron 2010, 66, 2235–2261.
(14) Pigge, F. C. Dearomatization Reactions: An Overview in
Arene Chemistry: Reaction Mechanisms and Methods for Aromatic
Compounds. Mortier, J.; Ed. Wiley. 2015, p.p. 399.
(15) Wertjes, W. C.; Southgate, E. H.; Sarlah, D. Recent
Advances in Chemical Dearomatization of Nonactivated Arenes.
Chem. Soc. Rev. 2018, 47, 7996–8017.
(16) Cornelisse, J. The Meta Photocycloaddition of Arenes to
Alkenes. Chem. Rev. 1993, 93, 615–669.
(17) Zhuo, C.-X.; Zhang, W.; You, S.-L. Catalytic Asymmetric
Dearomatization Reactions. Angew. Chem. Int. Ed. 2012, 51, 12662–
12686.
(28) Gao, Y.D.; Macneil, D.J.; Morin, N.R.; Fukami, T.;
Kanatani, A.; Fukuroda, T. Ishii, Y.; Morin, M. Merck & Co., Inc.
Spiro-indolines as Y5 Receptor Antagonists. International Publication
No. WO 00/27845, May, 18, 2000.
(29) Seitz, S.P.; Cherney, E. C.; Zhu, X. Bristol-Myers Squibb
Company. Inhibitors of Indoleamine 2,3- Dioxygenase and Methods of
Their Use. International Publication No. WO 2019/074824 Al. April,
18, 2019
(30) Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C.
Highly Efficient Organic Light-Emitting Diodes from Delayed
Fluorescence. Nature 2012, 492, 234–238.
(31) Speckmeier, E.; Fischer, T. G.; Zeitler, K. A Toolbox
Approach To Construct Broadly Applicable Metal-Free Catalysts for
Photoredox Chemistry: Deliberate Tuning of Redox Potentials and
Importance of Halogens in Donor-Acceptor Cyanoarenes. J. Am.
Chem. Soc. 2018, 140, 15353–15365.
(18) Zheng, C.; You; S.-L. Catalytic Asymmetric
(32) Harrowven, D. C.; Nunn, M. I. T.; Newman, N. A.; Fenwick,
D. R. A New Cascade Radical Reaction for the Synthesis of Biaryls
and Triaryls from Benzyl Iodoaryl Ethers. Tetrahedron Lett. 2001, 42
(5), 961–964. For detailed analysis of the rearrangement process, see
Dearomatization by Transition-Metal Catalysis:
A Method for
Transformations of Aromatic Compounds. Chem. 2016, 1, 830–857.
(19) (a) Aycock, R. A.; Wang, H.; Jui, N. T. A Mild Catalytic
System for Radical Conjugate Addition of Nitrogen Heterocycles.
ACS Paragon Plus Environment