1796 Biochemistry, Vol. 49, No. 8, 2010
Aaron et al.
off-pathway conformations that lead to the formation of
aberrant products.
4. Tholl, D. (2006) Terpene synthases and the regulation, diversity and
biological roles of terpene metabolism. Curr. Opin. Plant Biol. 9, 297–304.
5. Austin, M. B., O’Maille, P. E., and Noel, J. P. (2008) Evolving
biosynthetic tangos negotiate mechanistic landscapes. Nat. Chem.
Biol. 4, 217–222.
6. Lesburg, C. A., Zhai, G., Cane, D. E., and Christianson, D. W. (1997)
Crystal structure of pentalenene synthase: Mechanistic insights on
terpenoid cyclization reactions in biology. Science 277, 1788–1789.
7. Starks, C. M., Back, K., Chappell, J., and Noel, J. P. (1997) Structural
basis for cyclic terpene biosynthesis by tobacco 5-epi-aristolochene
synthase. Science 277, 1815–1820.
8. Caruthers, J. M., Kang, I., Rynkiewicz, M. J., Cane, D. E., and
Christianson, D. W. (2000) Crystal structure determination of aris-
tolochene synthase from the blue cheese mold, Penicillium roqueforti.
J. Biol. Chem. 275, 25533–25539.
9. Rynkiewicz, M. J., Cane, D. E., and Christianson, D. W. (2001)
Structure of trichodiene synthase from Fusarium sporotrichioides
provides mechanistic inferences on the terpene cyclization cascade.
Proc. Natl. Acad. Sci. U.S.A. 98, 13543–13548.
10. Shishova, E. Y., Di Costanzo, L., Cane, D. E., and Christianson,
D. W. (2007) X-ray crystal structure of aristolochene synthase from
Aspergillus terreus and evolution of templates for the cyclization of
farnesyl diphosphate. Biochemistry 46, 1941–1951.
11. Gennadios, H. A., Gonzalez, V., Di Costanzo, L., Li, A., Yu, F.,
Miller, D. J., Allemann, R. K., and Christianson, D. W. (2009) Crystal
structure of (þ)-δ-cadinene synthase from Gossypium arboreum and
evolutionary divergence of metal binding motifs for catalysis. Bio-
chemistry 48, 6175–6183.
Manipulation of the cyclization template by site-directed
mutagenesis can redirect the biosynthetic trajectory of a terpe-
noid cyclase. This result can be achieved by modification of active
site contour residues (34) or of residues that are more distant
from the active site (35). With EIZS, two different strategies have
been employed to manipulate the cyclization template. Mutagen-
esis of metal-binding residues appears to have an only modest
effect on the cyclization template such that the fidelity of epi-
isozizaene biosynthesis is not significantly compromised. Indeed,
certain amino acid substitutions involving the Mg2þ-binding
residues, such as D100N, N240D, S244A, and E248D, actually
lead to increased proportions of epi-isozizaene and lower levels of
the alternative sesquiterpene products, although with signifi-
cantly decreased overall catalytic efficiency (Figure 6) (14).
Mutagenesis of residues in closer contact with the farnesyl moiety
or the derived cations (and which therefore contribute directly to
the active site contour) significantly compromises the fidelity of
epi-isozizaene biosynthesis (Figure 6), with the F198A substitu-
tion completely suppressing epi-isozizaene formation and redir-
ecting the cyclization cascade toward the generation of alter-
native acyclic, monocyclic, and bicyclic sesquiterpenes. Thus,
remolding the active site contour by mutagenesis opens up new
cyclization trajectories while closing off old ones.
The appearance of low levels of new or alternative cyclization
products resulting from mutagenesis of the active site contour in a
terpenoid cyclase may reflect past or future evolutionary poten-
tial; i.e., catalytic promiscuity in enzyme function may provide a
“toehold of evolution” (36). The evolution of biosynthetic
diversity in this family of enzymes is achieved by simply remold-
ing the active site contour to promote one cyclization pathway
while suppressing hundreds of others, and it is notable that this is
readily achieved by only a handful of amino acid substitutions.
This work represents the first step in deciphering the relationship
between the structure of the EIZS active site and its biosynthetic
specificity as a product-like template for terpenoid cyclization
reactions: the three-dimensional contour of the active site can be
remolded to better fit another product and disfavor others, even
to the point of excluding epi-isozizaene formation. That the
biosynthetic specificity of a terpenoid cyclase is so sensitive to and
so readily manipulated by minimal mutagenesis in nature or in
the laboratory will likely contribute to the growing structural and
stereochemical diversity of the terpenome.
12. Tarshis, L. C., Yan, M., Poulter, C. D., and Sacchettini, J. C. (1994)
Crystal structure of recombinant farnesyl diphosphate synthase at
˚
2.6-A resolution. Biochemistry 33, 10871–10877.
13. Lin, X., Hopson, R., and Cane, D. E. (2006) Genome mining in
Streptomyces coelicolor: Molecular cloning and characterization of a
new sesquiterpene synthase. J. Am. Chem. Soc. 128, 6022–6023.
14. Lin, X., and Cane, D. E. (2009) Biosynthesis of the sesquiterpene
antibiotic albaflavenone in Streptomyces coelicolor. J. Am. Chem. Soc.
131, 6332–6333.
15. Zhao, B., Lin, X., Lei, L., Lamb, D. C., Kelly, S. L., Waterman, M. R.,
and Cane, D. E. (2008) Biosynthesis of the sesquiterpene antibiotic
albaflavenone in Streptomyces coelicolor A3(2). J. Biol. Chem. 283,
8183–8189.
€
16. Gurtler, H., Pedersen, R., Anthoni, U., Christophersen, C., Nielsen,
P. H., Wellington, E. M., Pedersen, C., and Bock, K. (1994) Alba-
flavenone, a sesquiterpene ketone with a zizaene skeleton produced by
a streptomycete with a new rope morphology. J. Antibiot. 47, 434–439.
17. Otwinowski, Z., and Minor, M. (1997) Processing of X-ray diffraction
data collected in oscillation mode. Methods Enzymol. 276, 307–326.
18. Vonrhein, C., Blanc, E., Roversi, P., and Bricogne, G. (2007) Auto-
mated structure solutoin with autoSHARP. Methods Mol. Biol. 364,
215–230.
19. Brunger, A. T. (2007) Version 1.2 of the Crystallography and NMR
system. Nat. Protoc. 2, 2728–2733.
20. Jones, T. A., Zou, J. Y., Cowan, S. W., and Kjeldgaaard, M. (1991)
Improved methods for building protein models in electron density
maps and the location of errors in these models. Acta Crystallogr.
A47, 110–119.
21. Emsely, P., and Cowtan, K. (2004) Coot: Model-building tools for
molecular graphics. Acta Crystallogr. D60, 2126–2132.
ACKNOWLEDGMENT
22. Adams, P. D., Grosse-Kunstleve, R. W., Hung, L. W., Ioerger, T. R.,
McCoy, A. J., Moriarty, N. W., Read, R. J., Sacchettini, J. C., Sauter,
N. K., and Terwilliger, T. C. (2002) PHENIX: Building new software
for automated crystallographic structure determination. Acta Crys-
tallogr. D58, 1948–1954.
23. Storoni, L. C., McCoy, A. J., and Read, R. J. (2004) Likelihood-
enhanced fast rotation functions. Acta Crystallogr. D60, 432–438.
24. Harangi, J. (2003) Retention index calculation without n-alkanes: The
virtual carbon number. J. Chromatogr., A 993, 187–195.
25. Whittington, D. A., Wise, M. L., Urbansky, M., Coates, R. M.,
Croteau, R. B., and Christianson, D. W. (2002) Bornyl diphosphate
synthase: Structure and strategy for carbocation manipulation by a
terpenoid cyclase. Proc. Natl. Acad. Sci. U.S.A. 99, 15375–15380.
26. Hyatt, D. C., Youn, B., Zhao, Y., Santhamma, B., Coates, R. M.,
Croteau, R. B., and Kang, C. (2007) Structure of limonene synthase, a
simple model for terpenoid cyclase catalysis. Proc. Natl. Acad. Sci.
U.S.A. 104, 5360–5365.
We thank the National Synchrotron Light Source at Brookhaven
National Laboratory (beamline X29A) and the Advanced Photon
Source at Argonne National Laboratory (NE-CAT beamline
24-ID-C) for access to X-ray crystallographic data collection
facilities. We thank Dr. Wayne Chou for providing FPP and
assistance with GC-MS experiments and Cristina Virgilio for
assistance with protein preparation.
REFERENCES
1. Lesburg, C. A., Caruthers, J. M., Paschall, C. M., and Christianson,
D. W. (1998) Managing and manipulating carbocations in biology:
Terpenoid cyclase structure and mechanism. Curr. Opin. Struct. Biol.
8, 695–703.
2. Christianson, D. W. (2006) Structural biology and chemistry of the
terpenoid cyclases. Chem. Rev. 106, 3412–3442.
3. Christianson, D. W. (2008) Unearthing the roots of the terpenome.
Curr. Opin. Chem. Biol. 12, 141–150.
27. Seemann, M., Zhai, G., de Kraker, J. W., Paschall, C. M., Christianson,
D. W., and Cane, D. E. (2002) Pentalenene synthase. Analysis of active
site residues by site-directed mutagenesis. J. Am. Chem. Soc. 124, 7681–
7689.