D. Dhanak et al. / Bioorg. Med. Chem. Lett. 11 (2001) 1445–1450
1449
Table 4.
References and Notes
1. Gallin, J. I.; Goldstein, I. M.; Syndrman, R. In Inflamma-
tion: Basic Principles and Clinical Correlates; Raven: New
York, 1992.
2. (a) Wells, T. N. C.; Proudfoot, A. E.; Power, C. A. Immu-
nol. Lett. 1999, 65, 35. (b) Epstein, F. H. N. Engl. J. Med.
1998, 338, 436. (c) Ward, S. G.; Westwick, J. Biochem. J. 1998,
3333, 457. (d) Baggiolini, M.; Dewald, B.; Moser, B. Annu.
Rev. Immunol. 1997, 15, 675.
Compound
R1
R2
CCR3
IC50 (nM)
3. (a) Forssmann, U.; Uguccioni, M.; Loetscher, P.; Dahin-
den, C. A.; Thelen, M.; Baggiolini, M. J. Exp. Med. 1997, 185,
2171. (b) Williams, T. J. Eur. Cytokine Netw. 1999, 10, 253. (c)
Cook, E. B.; Stahl, J. L.; Graziano, F. M. Allergy Asthma
Proc. 1998, 19, 253. (d) Ponath, P. D.; Qin, S.; Ringler, D. J.;
Clark-Lewis, I.; Wang, J.; Kassam, N.; Smith, H.; Xiaojie, S.;
Gonzalo, J.-A.; Newman, W.; Guitierrez-Ramos, J.-C.;
Mackay, C. R. J. Clin. Invest. 1996, 97, 604. (e) Garcia-
Zepeda, E. A.; Rothenburg, M. C.; Ownbey, R. T.; Celestin,
J.; Leder, P.; Luster, A. D. Nat. Med. 1996, 2, 449. (f) Brown,
J. R.; Kliemberg, J.; Marini, M.; Sun, G.; Bellini, A.; Mattoli,
S. Clin. Exp. Immunol. 1998, 114, 137. (g) Rothenburg, M. E.;
MacLean, J. A.; Pearlman, E.; Luster, A. D.; Leder, P. J. J.
Exp. Med. 1997, 185, 785.
23
28
29
30
31
32
33
34
35
36
37
38
39
4-NO2-Ph
4-Cl-Ph
Ph
190
45
4-OMe-Ph
4-OMe-Ph
4-OMe-Ph
4-Cl-Ph
2-OMe-Ph
4-OMe-Ph
2-OMe-Ph
4-CN-Ph
Ph
Cyclohexyl
4-Thiazoyl
4-Thiazoyl
4-CN-Ph
4-CN-Ph
4-OMe-Ph
4-OMe-Ph
4-Cl-Ph
700
500
800
125
90
15
250
5
4-Cl-Ph
4-Pyridyl
4-Pyridyl
3-Pyridyl
4-OMe-Ph
4-Ph-Ph
27
>1220
600
4. (a) Heath, H.; Qin, S.; Rao, P.; Wu, L.; LaRosa, C.; Kas-
sam, M.; Ponath, P. D.; Mackay, C. R. J. Clin. Invest. 1997,
99, 178. (b) Ponath, P. D.; Qin, S.; Post, T. W.; Wang, J.; Wu,
L.; Gerard, N. P.; Newman, W.; Gerard, C.; Mackay, C. R. J.
Exp. Med. 1996, 183, 2437. (c) Daugherty, B. L.; Siciliano,
S. J.; DeMartino, J. A.; Malkowits, L.; Sirotina, A.; Springer,
M. S. J. Exp. Med. 1996, 183, 2349. (d) Uguccioni, M.;
Mackay, C. R.; Ochensberger, B.; Loetscher, P.; Rhis, S.;
LaRosa, G. L.; Rao, P.; Ponath, P. D.; Baggiolini, M.;
Dahinden, C. A. J. Clin. Invest. 1997, 100, 1137.
5. (a) Gonzalo, J.-A.; Lloyd, C. M.; Wen, D.; Albar, J. P.;
Wells, T. N. C.; Proudfoot, A.; Martinez-A, C.; Dorf, M.;
Bjerke, T.; Coyle, A. J.; Gutierrez-Ramos, J. C. J. Exp. Med.
1998, 188, 157. (b) Teixeira, M. M.; Wells, T. N. C.; Lukacs,
N. W.; Proudfoot, A. E. I.; Kunkel, S. L. J. Clin. Invest. 1997,
100, 1657.
6. Sabroe, I.; Conroy, D. M.; Gerard, N. P.; Li, Y.; Collins,
P. D.; Post, T. W.; Jose, P. J.; Williams, T. J.; Gerard, C. J.;
Ponath, P. D. J. Immunol. 1998, 161, 6139.
7. Marleau, S.; Griffiths-Johnson, D. A.; Collins, P. D.; Bakhle,
T.; Williams, T. J.; Jose, P. J. J. Immunol. 1996, 157, 4141.
8. (a) Saunders, J.; Tarby, C. M. DDT 1999, 4, 80. (b) Sabroe,
I.; Peck, M. J.; Kenlen, J. V. B.; Jorritsma, A.; Simmons, G.;
Clapham, P. R.; William, T. J.; Pease, J. E. J. Biol. Chem.
2000, 275, 25985.
surrogates as exemplified by 40. Clearly, our limited
survey suggests that there is considerable scope for fur-
ther optimization to generate compounds with
improved CCR3 affinity and different physicochemical
properties. However, we concluded that the profile of 36
was suitable for evaluation in functional assays and
determined its ability to inhibit the eotaxin induced
chemotaxis of primary human eosinophils derived from
allergic individuals.17 In this assay, and consistent with
its CCR3 affinity determined in the binding assay, 36
was found to be a potent inhibitor of eosinophil che-
motaxis (IC50=15 nM). In contrast, in the same assay,
36 had no effect on the C5a induced eosinophil chemo-
taxis. Taken together with the previously reported abil-
ity of related compounds to block the functional
responses mediated by eotaxin, MCP-3 or MCP-4, the
compounds reported herein appear to be acting via
CCR3 antagonism.9
9. Dhanak, D.; Christmann, L. T.; Darcy, M. G.; Jurewicz, A.
J.; Keenan, R. M.; Lee, J.; Sarau, H. M.; Widdowson, K. L.;
White, J. R. Bioorg. Med. Chem. Lett. 2001, 11, 1441.
10. All compounds gave spectroscopic and analytical data
consistent with their assigned structure.
11. (a) Boeijen, A.; Liskamp, R. M. J. Eur. J. Org. Chem.
1999, 9, 2127. (b) Moltzen, E. K.; Pedersen, H.; Bogeso, K. P.;
Meier, E.; Frederiksen, K.; Sanchez, C.; Lembol, H. L. J.
Med. Chem. 1994, 37, 4085.
12. (a) Angelastro, M. R.; Mehdi, S.; Burkhart, J. P.; Peet,
N. P.; Bey, P. J. Med. Chem. 1990, 33, 11. (b) Diana, G. D.;
Treasurywala, A. M.; Bailey, T. R.; Oglesby, R. C.; Pevear,
D. C. J. Med. Chem. 1990, 33, 1306.
13. (a) Easton, C. J.; Hutton, C. A.; Merrett, M. C.; Tiekink,
E. R. T. Tetrahedron 1996, 52, 7025. (b) Williams, E. L. Tet-
rahedron Lett. 1992, 33, 1033. (c) Boesch, R. Ger. Offen. DE
2808842, 1978; Chem. Abstr. 1979, 90, 23060.
14. (a) Brain, C. T.; Hallett, A.; Ko, S. Y. J. Org. Chem. 1997,
62, 3808. (b) Houssin, R.; Lohez, M.; Bernier, J.-L.; Heni-
chart, J.-P. J. Org. Chem. 1985, 50, 2787.
Highly potent CCR3 antagonists have been developed
from a series of phenylalanine ester-based leads.
Although classical heterocyclic ester mimetics proved to
be ineffective in the present study, conformationally less
constrained derivatives gave more promising results.
Two-dimensional, solution-phase parallel synthesis
optimization was utilized to allow for rapid improve-
ment in the receptor affinity and highly potent, func-
tional CCR3 antagonists have been identified. The
hydrolytic stability of these novel antagonists should
allow for their in vivo evaluation and the results of these
studies will be reported in due course.