Isotope-Effect Profiles in the Oxidative N-Demethylation of N-Dimethylanilines
FULL PAPER
[4]
removal, a white solid (75%). 1H NMR (CDCl3, 25 °C, TMS): δ ϭ
7.45 (d, J ϭ 8.6 Hz, 2 H), 6.70 (d, J ϭ 8.6 Hz, 2 H), 2.97 (m, 2 H).
E. Baciocchi, M. F. Gerini, O. Lanzalunga, A. Lapi, S. Manci-
nelli, P. Mencarelli, Chem. Commun. 2000, 393Ϫ394.
V. Renganathan, M. H. Gold, Biochemistry 1986, 25,
1626Ϫ1631.
The possibility that the radical cation reacts with PϪFeIVϭO
by a HAT mechanism has also been considered at least for the
biomimetic process.[7] However, the results reported by Lind-
say-Smith seem clearly in favour of a deprotonation step.[8]
Moreover, the HAT mechanism is unlikely also on energetic
[5]
[6]
4-Bromo-N,N-bis(dideuteriomethyl)aniline: This material was pre-
pared using the procedure described above. Purification on silica
gel using petroleum ether/diethyl ether (4:1) as the eluent gave, after
solvent removal, a white solid (72%). 1H NMR (CDCl3, 25 °C,
TMS): δ ϭ 7.30 (d, J ϭ 9.0 Hz, 2 H), 6.58 (d, J ϭ 9.0 Hz, 2 H),
2.88 (m, 2 H).
grounds, the homolytic CϪH BDE free energy (180 kJ molϪ1
,
in MeCN) being much higher than the heterolytic one
Enzymatic or Biomimetic Oxidation: H2O2 (10 µmol) was added,
over a period of 1 h by an infusion pump, to a magnetically stirred
argon-degassed solution of the substrate (10 µmol), LiP (0.96 units,
1.16 nmol) or FeTPPSCl (0.3 µmol) in 3 mL of 50 m sodium-tart-
rate-buffered solution with 2% acetonitrile as cosolvent, pH ϭ 4,
at 25 °C. At the end of the reaction the mixture was made basic,
the products of the reaction were extracted with CH2Cl2 and dried
over Na2SO4. In the LiP-catalysed oxidation of 4-trifluoromethyl-
N,N-bis(dideuteriomethyl)aniline a lower amount of LiP (0.64
units, 0.77 nmol) was used to avoid the formation of 4-trifluoro-
methylaniline.
(70 kJ molϪ1).
[7]
[8]
[9]
Y. Goto, Y. Watanabe, S. Fukuzumi, J. P. Jones, J. P. Dinno-
cenzo, J. Am. Chem. Soc. 1998, 120, 10762Ϫ10763.
J. R. Lindsay-Smith, D. N. Mortimer, J. Chem. Soc., Perkin
Trans. 2 1986, 1743Ϫ1749.
A similar mechanism was proposed for other hemoproteins. O.
Okazaki, F. P. Guengerich, J. Biol. Chem. 1993, 268,
1546Ϫ1552 and references therein.
B. Meunier, in Metalloporphyrins in Catalytic Oxidations (Ed.:
R. A. Sheldon), Marcel Dekker, Inc, New York, 1994, Chap-
ter 5.
[10]
[11]
[12]
[13]
Product Analysis: Yields were determined by GC and 1H NMR
spectroscopy (with 4-methoxyacetophenone as the internal stand-
ard) and referred to the starting material. A good material balance
(Ͼ90%) was observed in all the experiments.
M. Jonsson, D. D. M. Wayner, J. Lusztyk, J. Phys. Chem. 1996,
100, 17539Ϫ17543.
V. D. Parker, M. Tilset, J. Am. Chem. Soc. 1991, 113,
8778Ϫ8781.
The pKa of the N,N-dimethylaniline radical cations were estim-
ated by the following equation: pKa ϭ (2.3 RT)Ϫ1 ϫ [∆G°hom
Ϫ 96.48 E°ArNϩ·(CH3)2/ArN(CH3)2 ϩ 96.48 E°Hϩ/H·]where ∆G°hom
is the standard free energy associated with the homolytic cleav-
age of the NCH2ϪH bond, taken as 346 kJ molϪ1 (at 25 °C),
resulting from the difference between ∆H°hom (380 kJ molϪ1),
an average value for the NCH2ϪH homolytic bond dissoci-
ation enthalpy for a number of N,N-dimethylanilines,[14] and
T∆S°hom, where ∆S°ϭ 115 J KϪ1 is the standard entropy of the
hydrogen atom.[15] E°ArNϩ·(CH3)2/ArN(CH3)2 is the standard
redox potential (V vs. NHE in H2O) of the couple
KDIEs Measurement: At the end of the enzymatic or biomimetic
oxidation the reaction mixture was treated with 400 µL of a basic
solution of dimedone (0.2 ) in order to allow the formation of the
dimedone-formaldehyde adduct. After 30 minutes the mixture was
extracted with CH2Cl2. All the KDIE values, averaged over at least
four independent determinations, were determined by GC-MS ana-
lysis of the formaldehyde-dimedone adduct by the ratio of the in-
tensity of the molecular peaks m/z ϭ 294 and 293, corrected for
the statistical factor and for the 13C contribution, in the oxidation
of N,N-bis(dideuteriomethyl)anilines.
ArNϩ·(CH3)2/ArN(CH3)2 (Table 1). E°Hϩ/H·
, the standard
redox potential of the couple Hϩ/H·, is taken as Ϫ2.29 V vs.
NHE in H2O.[16]
[14]
G. W. Dombrowski, J. P. Dinnocenzo, S. Farid, J. L. Goodman,
I. R. Gould, J. Org. Chem. 1999, 64, 427Ϫ431.
Acknowledgments
This work was carried out with the financial support of Consiglio
[15] [15a]
A. M. de P. Nicholas, D. R. Arnold, Can. J. Chem. 1982,
`
60, 2165Ϫ2179. Ϫ [15b] F. G. Bordwell, J.-P. Cheng, J. A. Harrel-
son, Jr., J. Am. Chem. Soc. 1988, 110, 1229Ϫ1231.
Nazionale delle Ricerche (CNR) and Ministero dell’Universita e
Ricerca Scientifica e Tecnologica (MURST). We also thank Dr.
Patricia J. Harvey for having provided us a sample of LiP.
[16]
[17]
D. D. M. Wayner, V. D. Parker, Acc. Chem. Res. 1993, 26,
287Ϫ294.
´
G. Labat, J. L. Seris, B. Meunier, Angew. Chem. Int. Ed. Engl.
[1] [1a]
[1b]
1990, 29, 1471Ϫ1473.
M. Tien, T. K. Kirk, Science 1983, 221, 661Ϫ663. Ϫ
J.
[18] [18a]
V. Renganathan, K. Miki, M. H. Gold, Arch. Biochem.
K. Glenn, M. A. Morgan, M. B. Mayfield, M. Kuwahara, M.
[18b]
Biophys. 1985, 241, 304Ϫ314. Ϫ
M. Tien, T. K. Kirk, C.
H. Gold, Biochem. Biophys. Res. Commun. 1983, 114,
Bull, J. A. Fee, J. Biol. Chem. 1986, 261, 1687Ϫ1693. Ϫ [18c] A.
[1c]
1077Ϫ1083. Ϫ
H. E. Schoemaker, Recl. Trav. Chim. Pays-
Bas 1990, 109, 255Ϫ272. Ϫ [1d] G. Labat, B. Meunier, Bull. Soc.
Chim. Fr. 1990, 127, 553Ϫ564.
P. J. Kersten, M. Tien, B. Kalyanaraman, T. K. Kirk, J.
Biol. Chem. 1985, 260, 2609Ϫ2612. Ϫ
D. Mozuch, P. J. Kersten, K. A. Jensen, Biochemistry 1994, 33,
Andrawis, K. A. Johnson, M. Tien, J. Biol. Chem. 1988, 263,
[18d]
1195Ϫ1198. Ϫ
H. Wariishi, J. Huang, H. B. Dunford, M.
[2] [2a]
H. Gold, J. Biol. Chem. 1991, 266, 20694Ϫ20699.
R. A. More O’Ferral, in Proton-Transfer Reactions (Eds.: E. F.
Caldin, V. Gold), Chapman and Hall, London, 1975, Chapter
8.
S. B. Karki, J. P. Dinnocenzo, J. P. Jones, K. R. Korzekwa, J.
Am. Chem. Soc. 1995, 117, 3657Ϫ3664.
[2b]
[19]
[20]
K. E. Hammel, M.
[2c]
13349Ϫ13354 and references therein. Ϫ
Gold, Eur. J. Biochem. 1996, 237, 45Ϫ57.
K. Joshi, M. H.
[3] [3a]
S. D. Haemmerli, M. S. A. Leisola, D. Sanglard, A.
[3b]
Fiechter, J. Biol. Chem. 1986, 261, 6900Ϫ6903. Ϫ
D. K.
[21] [21a]
R. P. Bell, in The Proton in Chemistry, 2nd ed., Cornell
Joshi, M. H. Gold, Biochemistry 1994, 33, 10969Ϫ10976. Ϫ [3c]
D. C. Goodwin, S. D. Aust, T. A. Grover, Biochemistry 1995,
[21b]
University Press, Ithaca, New York, 1973, Chapter 12. Ϫ
L. Melander, W. H. Saunders, Jr., in Reaction Rates of Isotopic
Molecules, Wiley, New York, 1980, Chapter 5.
34, 5060Ϫ5065. Ϫ [3d] B. Kalyanaraman, Xenobiotica 1995, 25,
[3e]
667Ϫ675. Ϫ
A. Paszczynski, S. Goszczynski, R. L. Craw-
[22]
[23]
E. Baciocchi, A. Lapi, Tetrahedron Lett. 1999, 5485Ϫ5488.
ford, D. L. Crawford, Microb. Processes Biorem. 1995, 187. Ϫ
[3f] M. Chivukula, J. T. Spadaro, V. Renganathan, Biochemistry
1995, 34, 7765Ϫ7772.
Interestingly, a pKa value around 7 for a species like PϪFeIV
ϭ
O can be calculated on the basis of a thermochemical cycle.[24]
Eur. J. Org. Chem. 2001, 2305Ϫ2310
2309