Organic Letters
Letter
and Hydroxylamines. Org. Lett. 2014, 16, 1498. (c) Nishikawa, D.;
Hirano, K.; Miura, M. Asymmetric Synthesis of α-Aminoboronic Acid
Derivatives by Copper-Catalyzed Enantioselective Hydroamination. J.
Am. Chem. Soc. 2015, 137, 15620. (d) Takata, T.; Hirano, K.; Miura,
M. Synthesis of α-Trifluoromethylamines by Cu-Catalyzed Regio- and
Enantioselective Hydroamination of 1-Trifluoro-methylalkenes. Org.
Lett. 2019, 21, 4284.
ACKNOWLEDGMENTS
■
Financial support by NSFC (21772218, 21821002),
XDB20000000, the “Thousand Plan” Youth program, State
Key Laboratory of Organometallic Chemistry, Shanghai
Institute of Organic Chemistry, and the Chinese Academy of
Science is gratefully acknowledged.
(6) For selected papers: (a) Zhu, S.; Niljianskul, N.; Buchwald, S. L.
Enantio- and Regioselective CuH-Catalyzed Hydroamination of
Alkenes. J. Am. Chem. Soc. 2013, 135, 15746. (b) Zhu, S.;
Buchwald, S. L. Enantioselective CuH-Catalyzed Anti-Markovnikov
Hydroamination of 1,1-Disubstituted Alkenes. J. Am. Chem. Soc. 2014,
136, 15913. (c) Niljianskul, N.; Zhu, S.; Buchwald, S. L.
Enantioselective Synthesis of α-Aminosilanes by Copper-Catalyzed
Hydroamination of Vinylsilanes. Angew. Chem., Int. Ed. 2015, 54,
1638. (d) Yang, Y.; Shi, S.; Niu, D.; Liu, P.; Buchwald, S. L. Catalytic
Asymmetric Hydroamination of Unactivated Internal Olefins to
Aliphatic Amines. Science 2015, 349, 62. (e) Zhu, S.; Niljianskul, N.;
Buchwald, S. L. A direct approach to amines with remote
stereocentres by enantioselective CuH-catalysed reductive relay
hydroamination. Nat. Chem. 2016, 8, 144. (f) Guo, S.; Yang, J. C.;
Buchwald, S. L. A Practical Electrophilic Nitrogen Source for the
Synthesis of Chiral Primary Amines by Copper-Catalyzed Hydro-
amination. J. Am. Chem. Soc. 2018, 140, 15976.
(7) For recent selected reviews: (a) Yoon, T. P.; Ischay, M. A.; Du, J.
Visible light photocatalysis as a greener approach to photochemical
synthesis. Nat. Chem. 2010, 2, 527. (b) Xuan, J.; Xiao, W. Visible-
Light Photoredox Catalysis. Angew. Chem., Int. Ed. 2012, 51, 6828.
(c) Nguyen, J. D.; D'Amato, E. M.; Narayanam, J. M.; Stephenson, C.
R. J. Engaging unactivated alkyl, alkenyl and aryl iodides in visible-
light-mediated free radical reactions. Nat. Chem. 2012, 4, 854.
(d) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Visible Light
Photoredox Catalysis with Transition Metal Complexes: Applications
in Organic Synthesis. Chem. Rev. 2013, 113, 5322. (e) Hari, D. P.;
REFERENCES
■
(1) For selected references: (a) Bagley, M. C.; Dale, J. W.; Merritt,
E. A.; Xiong, X. Thiopeptide Antibiotics. Chem. Rev. 2005, 105, 685.
(b) Ricci, A. Amino Group Chemistry: From Synthesis to the Life
Sciences; Wiley-VCH: Weinheim, 2008. (c) Joule, J. A.; Mills, K.
Heterocyclic Chemistry; John Wiley & Sons: New York, 2010.
(d) Welsch, M. E.; Snyder, S. A.; Stockwell, B. R. Privileged scaffolds
for library design and drug discovery. Curr. Opin. Chem. Biol. 2010,
14, 347. (e) Roughley, S. D.; Jordan, A. M. The Medicinal Chemist’s
Toolbox: An Analysis of Reactions Used in the Pursuit of Drug
Candidates. J. Med. Chem. 2011, 54, 3451.
(2) For selected reviews: (a) Hassan, J.; Sevignon, M.; Gozzi, C.;
Schulz, E.; Lemaire, M. Aryl-Aryl Bond Formation One Century after
the Discovery of the Ullmann Reaction. Chem. Rev. 2002, 102, 1359.
(b) Carey, J. S.; Laffan, D.; Thomson, C.; Williams, M. T. Analysis of
the reactions used for the preparation of drug candidate molecules.
Org. Biomol. Chem. 2006, 4, 2337. (c) Hartwig, J. F. Evolution of a
Fourth Generation Catalyst for the Amination and Thioetherification
of Aryl Halides. Acc. Chem. Res. 2008, 41, 1534. (d) Ruiz-Castillo, P.;
Buchwald, S. L. Applications of Palladium-Catalyzed C-N Cross-
Coupling Reactions. Chem. Rev. 2016, 116, 12564. (e) Zhu, X.; Chiba,
S. Copper-catalyzed oxidative carbon-heteroatom bond formation: a
recent update. Chem. Soc. Rev. 2016, 45, 4504. (f) Xiong, T.; Zhang,
Q. New amination strategies based on nitrogen-centered radical
chemistry. Chem. Soc. Rev. 2016, 45, 3069. (g) Zhao, Y.; Xia, W.
Recent advances in radical-based C-N bond formation via photo-/
electrochemistry. Chem. Soc. Rev. 2018, 47, 2591.
̈
Konig, B. The Photocatalyzed Meerwein Arylation: Classic Reaction
of Aryl Diazonium Salts in a New Light. Angew. Chem., Int. Ed. 2013,
52, 4734. (f) Brimioulle, R.; Lenhart, D.; Maturi, M. M.; Bach. , T.
Enantioselective Catalysis of Photochemical Reactions. Angew. Chem.,
Int. Ed. 2015, 54, 3872. (g) Ravelli, D.; Protti, S.; Fagnoni, M.
Carbon-Carbon Bond Forming Reactions via Photo-generated
Intermediates. Chem. Rev. 2016, 116, 9850. (h) Liu, Q.; Wu, L.
Recent advances in visible-light-driven organic reactions. Natl. Sci.
(3) For selected reviews: (a) Muller, T. E.; Beller, M. Metal-Initiated
̈
Amination of Alkenes and Alkynes. Chem. Rev. 1998, 98, 675.
(b) Hong, S.; Marks, T. J. Organolanthanide-Catalyzed Hydro-
amination. Acc. Chem. Res. 2004, 37, 673. (c) Beller, M.; Seayad, J.;
Tillack, A.; Jiao, H. Catalytic Markovnikov and anti-Markovnikov
Functionalization of Alkenes and Alkynes: Recent Developments and
Trends. Angew. Chem., Int. Ed. 2004, 43, 3368. (d) Muller, T. E.;
̈
̈
Rev. 2017, 4, 359. (i) Marzo, L.; Pagire, S. K.; Reiser, O.; Konig, B.
Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M. Hydroamination:
Direct Addition of Amines to Alkenes and Alkynes. Chem. Rev. 2008,
108, 3795. (e) Chen, J.; Lu, Z. Asymmetric hydrofunctionalization of
minimally functionalized alkenes via earth abundant transition metal
catalysis. Org. Chem. Front. 2018, 5, 260.
Visible-Light Photocatalysis: Does It Make a Difference in Organic
Synthesis? Angew. Chem., Int. Ed. 2018, 57, 10034.
(8) (a) Nguyen, T. M.; Manohar, N.; Nicewicz, D. A. Anti-
Markovnikov Hydroamination of Alkenes Catalyzed by a Two-
Component Organic Photoredox System: Direct Access to Phenethyl-
amine Derivatives. Angew. Chem., Int. Ed. 2014, 53, 6198. (b) Romero,
N. A.; Nicewicz, D. A. Mech-anistic Insight into the Photoredox
Catalysis of Anti-Markovnikov Alkene Hydrofunctionalization Re-
actions. J. Am. Chem. Soc. 2014, 136, 17024.
(9) (a) Musacchio, A. J.; Lainhart, B. C.; Zhang, X.; Naguib, S. G.;
Sherwood, T. C.; Knowles, R. R. Catalytic Intermolecular Hydro-
aminations of Unactivated Olefins with Secondary Alkyl Amines.
Science 2017, 355, 727. (b) Zhu, Q.; Graff, D. E.; Knowles, R. R.
Intermolecular Anti-Markov-nikov Hydroamination of Unactivated
Alkenes with Sulfonamides Enabled by Proton-Coupled Electron
Transfer. J. Am. Chem. Soc. 2018, 140, 741.
(10) For selected reviews: (a) Paria, S.; Reiser, O. Copper in
Photocatalysis. ChemCatChem 2014, 6, 2477. (b) Reiser, O. Shining
Light on Copper: Unique Opportunities for Visible-Light-Catalyzed
Atom Transfer Radical Addition Reactions and Related Processes.
Acc. Chem. Res. 2016, 49, 1990. (c) Hossain, A.; Bhattacharyya, A.;
Reiser, O. Copper’s rapid ascent in visible-light photoredox catalysis.
Science 2019, 364, No. eaav9713. For selected examples by Fu et al.:
(d) Creutz, S. E.; Lotito, K. J.; Fu, G. C.; Peters, J. C. Photoinduced
Ullmann C-N Coupling: Demonstrating the Viability of a Radical
Pathway. Science 2012, 338, 647. (e) Bissember, A. C.; Lundgren, R.
(4) For selected papers: (a) Taylor, J. G.; Whittall, N.; Hii, K. K.
Copper-Catalyzed Intermolecular Hydroamination of Alkenes. Org.
Lett. 2006, 8, 3561. (b) Rucker, R. P.; Whittaker, A. M.; Dang, H.;
Lalic, G. Synthesis of Tertiary Alkyl Amines from Terminal Alkenes:
Copper-Catalyzed Amination of Alkyl Boranes. J. Am. Chem. Soc.
2012, 134, 6571. (c) Bernoud, E.; Lepori, C.; Mellah, M.; Schulz, E.;
Hannedouche, J. Recent advances in metal free- and late transition
metal-catalysed hydroamination of unactivated alkenes. Catal. Sci.
Technol. 2015, 5, 2017. (d) Huang, L.; Arndt, M.; Gooßen, K.; Heydt,
H.; Gooßen, L. J. Late Transition Metal-Catalyzed Hydroamination
and Hydroamidation. Chem. Rev. 2015, 115, 2596. (e) Jordan, A. J.;
Lalic, G.; Sadighi, J. P. Coinage Metal Hydrides: Synthesis,
Characterization, and Reactivity. Chem. Rev. 2016, 116, 8318.
(f) Park, S.; Kang, S.; Lee, Y. Copper-Catalyzed Intermolecular
Hydroamination of Arylamines or Aza-Heterocycles with Nitrostyrene
Derivatives. Adv. Synth. Catal. 2019, 361, 1071.
(5) For selected papers: (a) Miki, Y.; Hirano, K.; Satoh, T.; Miura,
M. Copper-Catalyzed Intermolecular Regioselective Hydroamination
of Styrenes with Polymethylhydrosiloxane and Hydroxylamines.
Angew. Chem., Int. Ed. 2013, 52, 10830. (b) Miki, Y.; Hirano, K.;
Satoh, T.; Miura, M. Copper-Catalyzed Enantioselective Formal
Hydroamination of Oxa and Azabicyclic Alkenes with Hydrosilanes
D
Org. Lett. XXXX, XXX, XXX−XXX