5718 Journal of Medicinal Chemistry, 2007, Vol. 50, No. 23
Graneto et al.
(6) Adams, J. L.; Badger, A. M.; Kumar, S.; Lee, J. C. p38 MAP
kinase: molecular target for the inhibition of pro-inflammatory
cytokines. Prog. Med. Chem. 2001, 38, 1-60.
(7) Cirillo, P. F.; Pargellis, C.; Regan, J. The non-diaryl heterocycle
classes of p38 MAP kinase inhibitors. Curr. Top. Med. Chem. 2002,
2, 1021-1035.
(8) Jackson, P. F.; Bullington, J. L. Pyridinylimidazole based p38 MAP
kinase inhibitors. Curr. Top. Med. Chem. 2002, 2, 1011-1020.
(9) Lee, J. C.; Kumar, S.; Griswold, D. E.; Underwood, D. C.; Votta, B.
J.; Adams, J. L. Inhibition of p38 MAP kinase as a therapeutic
strategy. Immunopharmacology 2000, 47, 185-201.
(10) Haddad, J. J. VX-745, Vertex Pharmaceuticals. Curr. Opin. InVest.
Drugs 2001, 2 (8), 1070-1076.
(11) Manuscript in preparation.
(12) Substituted pyrazoles as p38 kinase inhibitors. Expert Opin. Ther.
Pat. 1999, 9 (7), 975-979.
(13) Lieber, E.; Orlowski, R. C. Hydrazinolysis of 1-(Alkyldithioate)-
piperidine. J. Org. Chem. 1957, 22, 88-89.
(14) Nomoto, Y.; Haruki, T.; Hirata, T.; Teranishi, M.; Ohno, T.; Kubo,
K. Studies on Cardiotonic agents V. Synthesis of 1-(6,7-dimethoxy-
4-quinazolinyl)piperidine. Derivatives carrying various 5-membered
heterocyclic rings at the 4-position. Chem. Pharm. Bull. 1991, 39,
86-90.
(15) Anantanarayan, A.; Clare, M.; Collins, P. W.; Crich, J. Z.; Devraj,
R. V.; Flynn, D. L.; Geng, L.; Graneto, M. J.; Hanau, C. E.; Hanson,
G. J.; Hartmann, S. J.; Hepperle, M.; Huang, H.; Khanna, I. K.;
Koszyk, F. J.; Liao, S.; Metz, S.; Partis, R. A.; Perry, T. D.; Rao, S.
N.; Selness, S. R.; South, M. S.; Stealey, M. A.; Talley, J. J.; Vazquez,
M. L.; Weier, R. M.; Xu, X.; Yu, Y. Preparation of heteroarylpyra-
zoles as p38 kinase inhibitors. PCT Int. Appl. WO0031063A1, 2000.
(16) Pfeiffer, W. D.; Dilk, E.; Bulka, E. Reaction of 2,4-dimethylthi-
osemicarbazide with alpha-halo ketones. Z. Chem. 1977, 175, 173-
4.
(17) Apparao, S.; Ila, H.; Junjappa, H. A new, general synthesis of
1-substituted 2-amino-4-aroyl-5-methylthiopyrroles using alpha-
ketoketene S, S-acetals. Part 14. Synthesis 1981, 1, 65-66.
(18) Katagiri, N.; Ise, S.; Watanabe, N.; Kaneko, C. Cycloadditions in
syntheses. XLVIII. Synthesis of nucleosides and related compounds.
XVII. Dialkyl 1,3-dithiethan- and 1,3-dithiolan-2-ylidenemalonate
S-oxides: equivalents to dialkoxycarbonylketenes. Chem. Pharm.
Bull. 1990, 38, 3242-3248.
described in the synthesis of 4, 10, and 11. mp 268.8-268.9 °C;
1H NMR (DMSO-d6/300 MHz) 12.6 (br s, 1H), 8.45 (d, J ) 6.0
Hz, 2H), 7.40 (d, J ) 8.4 Hz, 2H), 7.30 (m, 4H), 4.65 (br d, J )
4.2 Hz, 1H), 3.55 (m, 1H), 3.11 (br d, J ) 12.6 Hz, 2H), 2.65 (dd,
J ) 9.9 Hz and J ) 10.5 Hz, 2H), 1.73 (d, J ) 10.2 Hz, 2H), 1.44
(m, 2H). ESHRMS m/z 355.1329 (M + H, C19H19N4ClO requires
355.1326). Anal. (C19H19ClN4O) C, H, N.
(8aS)-2-[3-(4-Chlorophenyl)-4-pyridin-4-yl-1H-pyrazol-5-yl]-
octahydropyrrolo[1,2-a]pyrazine (19). This compound was pre-
pared using the methods described in the synthesis of 4, 10, and
1
11. mp 226.1-228.8 °C; H NMR (DMSO-d6/400 MHz) 12.6 (br
s, 1H), 8.44 (dd, J ) 5.6 Hz and J ) 1.6 Hz, 2H), 7.43 (br d, J )
7.2 Hz, 2H), 7.25 (d, J ) 8.4 Hz, 2H), 7.22 (d, J ) 5.6 Hz, 2H),
3.21 (d, J ) 11.2 Hz, 1H), 3.02 (d, J ) 11.6 Hz, 1H), 2.92 (t, J )
7.6 Hz, 1H), 2.85 (d, J ) 10.8 Hz, 1H), 2.69 (m, 1H), 2.40 (m,
1H), 2.14 (m, 1H), 2.02 (m, 2H), 1.61 (m, 3H), 1.21 (m, 1H).
ESHRMS m/z 380.1589 (M + H, C21H22ClN5 requires 380.1642).
Anal. (C21H22ClN5) C, H, N.
1-[5-(4-Chlorophenyl)-4-pyridin-4-yl-1H-pyrazol-3-yl]-3-me-
thylpiperazine (20). This compound was prepared using the
methods described in the synthesis of 4, 10, and 11. mp 233.4-
1
234.7 °C; H NMR (DMSO-d6/400 MHz) 8.4 (d, J ) 8 Hz, 2H),
7.4 (d, J ) 11 Hz, 2H), 7.23-7.27 (m, 4H), 3.3 (m, 2H), 2.9 (m,
1H), 2.7 (m, 2H), 2.5 (m, 1H), 2.2 (m, 1H), 0.85 (d, J ) 8.8 Hz,
3H). Anal. (C19H20ClN5+1.3%H2O) C, H: calcd, 6.04; found, 5.52,
N.
1-[5-(4-Chlorophenyl)-4-pyridin-4-yl-1H-pyrazol-3-yl]-3,5-
dimethylpiperazine (21). This compound was prepared using the
methods described in the synthesis of 4, 10, and 11. mp 226.5-
228.1 °C; 1H NMR (DMSO-d6/400 MHz) 8.4 (d, J ) 7.6 Hz, 2H),
7.4 (m, 2H), 7.3 (m, 4H), 3.3 (m, 2H), 2.9 (m, 2H), 2.8 (m, 2H),
0.8 (d, J ) 8.4 Hz, 6H). Anal. (C20H22ClN5) C, H, N.
p38 Enzyme Assay. p38R kinase activity was determined by
monitoring the phosphorylation of epidermal growth factor peptide
(EGFRP) in the presence of [γ-33P]ATP as described previously.33
Reaction mixtures included 25 mM HEPES pH 7.5, 200 µM
EGFRP, and 50 µM ATP (this concentration represents Km levels
for ATP). Reactions were initiated by the addition of 10-20 nM
p38R previously activated with GST_MKK6 (p38R:MKK6, 100:
1) for 1 h at 30 °C in the presence of 50 µM ATP. Compounds
were tested over the range of 0.001 µM to 100 µM in 10% DMSO.
Reactions proceeded for 60 min and were terminated using Dowex
resin.
(19) Hanks, S. K.; Quinn, A. M.; Hunter, T. The protein kinase family:
conserved features and deduced phylogeny of the catalytic domain.
Science 1988, 241, 42-52.
(20) Garcia-Sosa, Alfonso, T.; Mancera, Ricardo, L.; Dean, Phillip, M.
WaterScore: a novel method for distinguishing between bound and
displaceable water molecules in the crystal structure of the binding
site of protein-ligand complexes. J. Mol. Model. 2003, 9, 172-182.
(21) Lam, Patrick, Y.; Jadhav, Prabhakar, K.; Eyermann, Charles, J.;
Hodge, C. Nicholas; Ru, Yu; Bacheler, Lee T.; Meek, J. L.; Otto,
Michael J.; Rayner, Marlene M. Rational design of potent, bioavail-
able, nonpeptide cyclic ureas as HIV protease inhibitors. Science
1994, 263, 380-384.
(22) Finley, James, B.; Atigadda, Venkatram, R.; Duarte, Franco;, Zhao,
James, J.; Brouillette, Wayne, J.; Air, Gillian, M.; Luo, Ming. Novel
Aromatic Inhibitors of Influenza Virus Neuraminidase Make Selective
Interactions with Conserved Residues and Water Molecules in the
Active Site. J. Mol. Biol. 1999, 293, 1107-1119.
(23) Zaslavsky, Boris;, Gulyaeva, Nellie;, Zaslavsky, Alexander;, Lechner,
Pamela;, Chlenov, Michael;, Chait, Arnon. Relative hydrophobicity
and lipophilicity of Beta-blockers and related compounds as measured
by aqueous two-phase partioning, octanol-buffer partioning, and
HPLC. Eur. J. Pharm. Sci. 2002, 17, 81-93.
(24) Walters, Patrick, W.; Murcko, Ajay;, Murcko, Mark, A. Recognizing
molecules with drug-like properties. Curr. Opin. Chem. Biol. 1999,
3, 384-387.
Acknowledgment. Diffraction data for the inhibitor com-
plexes were collected at IMCA-CAT beamline 17-ID at the
Advanced Photon Source. Use of the IMCA-CAT beamline 17-
ID at the Advanced Photon Source was supported by the
companies of the Industrial Macromolecular Crystallography
Association through a contract with the Center for Advanced
Radiation Sources at the University of Chicago. Use of the
Advanced Photon Source was supported by the U.S. Department
of Energy, Office of Science, Office of Basic Energy Sciences,
under Contract No. W-31-109-Eng-38.
Supporting Information Available: Combustion analysis data.
This material is available free of charge via the Internet at http://
pubs.acs.org.
(25) Lipinski, Christopher, A.; Lombardo, Franco;, Dominy, Beryl, W.;
Feeney, Paul, J. Experimental and computational approaches to
estimate solubility and permeability in drug discovery and develop-
mental settings. AdV. Drug DeliVery ReV. 1997, 23, 3-25.
(26) Wilson, K. P.; McCaffrey, P. G.; Hsiao, K.; Pazhanisamy, S.; Galullo,
V.; Bemis, G. W.; Fitzgibbon, M. J.; Caron, P. R.; Murcko, M. A.;
Su, S. S. The structural basis for the specificity of pyridylimidazole
inhibitors of p38 MAP kinase. Chem. Biol. 1997, 4, 423-431.
(27) Wang, Z.; Canagarajah, B. J.; Boehm, J. C.; Kassisa, S.; Cobb, M.
H.; Young, P. R.; Abdel-Meguid, S.; Adams, J. L.; Goldsmith, E. J.
Structural basis of inhibitor selectivity in MAP kinases. Structure
1998, 6, 1117-1128.
References
(1) Cohen P. The search for physiological substrates of MAP and SAP
kinases in mammalian cells. Trends Cell Biol. 1997, 7, 353-361.
(2) Widmann, C.; Gibson, S.; Jarpe, M. B.; Johnson, G. L. Mitogen-
activated protein kinase: Conservation of a three-kinase module from
yeast to human. Physiol. ReV. 1999, 79, 143-180.
(3) Ono, K.; Han, J. The p38 signal transduction pathway: activation
and function. Cell Signal. 2000, 12, 1-13.
(4) Johnson, G. L.; Lapadat, R. Mitogen-activated protein kinase
pathways mediated by ERK, JNK, and p38 protein kinases. Science
2002, 298, 1911-1912.
(28) Stuart, J. M.; Townes, A. S.; Kang, A. H. Collagen autoimmune
arthritis. Ann. ReV. Immunol. 1984, 2, 199-218.
(5) English, J. M.; Cobb, M. H. Pharmacological inhibitors of MAPK
pathways. Trends Pharmacol. Sci. 2002, 23, 40-45.