10.1002/chem.201700577
Chemistry - A European Journal
FULL PAPER
Yield: 17 mg (75%). 1H NMR (CDCl3, 298 K): 9.99 (s, 4H; meso-H), 9.88
(s, 1H; CHO), 8.78 (d, 1H; peryald-H), 7.85-7.16 (m, 26H; Ar-H, peryald-
H), 4.10-3.74 (m, 16H; OCH2C2H4CH2O, -CH2CH3), 2.72-2.60 (m, 32H; -
OCH2C2H4CH2O, -CH2CH3), 1.74 (t, 24H; -CH2CH3), 1.09 (t, 24H; -
CH2CH3); UV-vis (CH2Cl2): [max, nm (ε, M-1cm-1)]: 410 (3.5 x 105), 541
(1.8 x 104), 575 (6.2 x 103); ESI-MS: m/z 1953.86 [M+H]+.
determinations (Figures S13–S15), typical procedure for the
Knoevenagel condensation, 1H NMR spectra of the condensed products
(Figures S17–S32), tables of yields of the products (Table S2, S3),
optimized geometries of CB1•pyald and peryald•MA within CB2 (Figures
S34, S35), atom numbering schemes (Figure S36), computed bond
distances and angles (Table S4), cartesian coordinates of the optimized
geometry.
Preparation of CB2•(peryald)2: Yield: 21 mg (78%). 1H NMR (CDCl3,
298 K): 10.01 (s, 4H; meso-H), 9.67 (s, 2H; CHO), 8.52 (d, 2H; peryald-
H), 7.86-6.84 (m, 36H; Ar-H, peryald-H), 3.89-3.53 (m, 40H;
OCH2C4H8CH2O, -CH2CH3), 2.68 (m, 16H; -OCH2C4H8CH2O), 1.75 (t,
24H; -CH2CH3), 1.07 (t, 24H; -CH2CH3); UV-vis (CH2Cl2) [max, nm (ε, M-1
cm-1)]: 411 (2.8 x 105), 540 (1.2 x 104), 575 (3.8 x 103); ESI-MS: m/z
Acknowledgements
We are thankful to Science and Engineering Research Board
(SERB), India for financial support and PM thanks IIT Kanpur,
for fellowship.
1144.31 [M+2H]2+
.
Preparation of CB3•(peryald)2: Yield: 18 mg (70%). 1H NMR (CDCl3,
298 K): 10.05 (s, 4H; meso-H), 9.82 (br, 2H; CHO), 8.77 (br, 2H; peryald-
H), 7.83-7.18 (m, 36H; Ar-H, peryald-H), 4.03-3.87 (m, 20H;
OCH2C6H12CH2O, -CH2CH3), 2.81-2.70 (m, 36H; -OCH2C6H12CH2O, -
[1]
[2]
[3]
a) C. J. Brown, F. D. Toste, R. G. Bergman, K. N. Raymond, Chem.
Rev. 2015, 115, 3012-3035; b) P. Ballester, M. Fujita, J. Rebek Jr.,
Chem. Soc. Rev. 2015, 44, 392-393; c) D. S. Kim, J. L. Sessler, Chem.
Soc. Rev. 2015, 44, 532-546; d) J. H. Jordan, B. C. Gibb, Chem. Soc.
Rev. 2015, 44, 547-585.
CH2CH3), 1.87-1.68 (m, 32H; -CH2CH3, -CH2CH3), 1.12 (t, 24H;
-
CH2CH3); UV-vis (CH2Cl2) [max, nm (ε, M-1 cm-1)]: 412 (4.8 x 105), 540
(2.6 x 104), 575 (6.0 x 103); ESI-MS: m/z 2344.15 [M+H]+.
a) A. Harada, R. Kobayashi, Y. Takashima, A. Hashidzume, H.
Yamaguchi, Nat. Chem. 2011, 3, 34-37; b) D. Fiedler, D. H. Leung, R.
G. Bergman, K. N. Raymond, Acc. Chem. Res. 2005, 38, 351-360; c) F.
Hof, S. L. Craig, C. Nuckolls, J. Rebek Jr., Angew. Chem. Int. Ed. 2002,
41, 1488-1508.
Instrumentation: UV-visible spectra were recorded on a Perkin Elmer
UV-Vis-NIR spectrometer. 1H and 13C NMR spectra were recorded on a
JEOL 500 MHz instrument. The residual 1H resonances of the solvents
were used as a secondary reference. ESI-MS spectra were recorded on
a Waters Micromass Quattro Micro triple quadropole mass spectrometer.
Infrared (IR) spectra were recorded in the range of 4000–400 cm-1 with a
Vertex 70 Bruker spectrophotometer on KBr pellets.
a) V. Ramamurthy, J. Sivaguru, Chem. Rev. 2016, 116, 9914-9993; b)
K. I. Assaf, W. M. Nau, Chem. Soc. Rev. 2015, 44, 394-418; c) S. Zarra,
D. M. Wood, D. A. Roberts, J. R. Nitschke, Chem. Soc. Rev. 2015, 44,
419-432; d) S. H. A. M. Leenders, R. Gramage-Doria, B. de Bruin, J. N.
H. Reek, Chem. Soc. Rev. 2015, 44, 433-448; e) M. D. Pluth, R. G.
Bergman, K. N. Raymond, Science 2007, 316, 85-88.
X-ray Structure Solution and Refinement: Crystals were coated with
light hydrocarbon oil and mounted in the 100 K dinitrogen stream of a
Bruker SMART APEX CCD diffractometer equipped with CRYO
industries low temperature apparatus and intensity data were collected
using graphite-monochromated Mo Ka radiation (λ=0.71073Å). The data
integration and reduction were processed with SAINT software.[19] An
absorption correction was applied.[20] Structures were solved by the
direct method using SHELXS-97 and were refined on F2 by full-matrix
least-squares technique using the SHELXL-2014 program package.[21]
Non-hydrogen atoms were refined anisotropically. In the refinement, the
hydrogen atoms were included in geometrically calculated positions and
were refined according to the “riding model”.
[4]
a) P. A. Gale, C. C. Tong, C. J. E. Haynes, O. Adeosun, D. E. Gross, E.
Karnas, E. M. Sedenberg, R. Quesada, J. L. Sessler, J. Am. Chem.
Soc. 2010, 132, 3240-3241; b) R. Cui, Q. Li, D. E. Gross, X. Meng, B.
Li, M. Marquez, R. Yang, J. L. Sessler, Y. Shao, J. Am. Chem. Soc.
2008, 130, 14364-14365.
[5]
[6]
a) T. Murase, Y. Nishijima, M. Fujita, J. Am. Chem. Soc. 2012, 134,
162-164; b) J. M. Wiester, P. A. Ulmann, C. A. Mirkin, Angew. Chem.
Int. Ed. 2011, 50, 114-137; c) M. Yoshizawa, J. K. Klosterman, M. Fujita,
Angew. Chem. Int. Ed. 2009, 48, 3418-3438.
CCDC 1531241 [CB3•(peryald)2], 1531242 [CB2•(peryald)2], 1531243
(CB1•Me-napald), 1531244 [CB2•(antald)2], and 1531245 [CB3•(pyald)2]
contain the supplementary crystallographic data for this paper. These
data are provided free of charge by The Cambridge Crystallographic
Data Centre.
a) H. Furukawa, K. E. Cordova, M. O'Keeffe, O. M. Yaghi, Science
2013, 341, 1230444; b) B. Mondal, K. Acharyya, P. Howlader, P. S.
Mukherjee, J. Am. Chem. Soc. 2016, 138, 1709-1716; c) B. Kang, J. W.
Kurutz, K. T. Youm, R. K. Totten, J. T. Hupp, S. T. Nguyen, Chem. Sci.
2012, 3, 1938-1944; d) S. Dawn, M. B. Dewal, D. Sobransingh, M. C.
Paderes, A. C. Wibowo, M. D. Smith, J. A. Krause, P. J. Pellechia, L. S.
Shimizu, J. Am. Chem. Soc. 2011, 133, 7025–7032; e) Y. Nishioka, T.
Yamaguchi, M. Yoshizawa, M. Fujita, J. Am. Chem. Soc. 2007, 129,
7000-7001.
Computational details: DFT calculations have been carried out by using
a
B3LYP hybrid functional and the Gaussian 03, revision B.04,
package.[17] The method used was Becke’s three-parameter hybrid-
exchange functional,[22] the non-local correlation provided by the Lee,
Yang, and Parr expression, and the Vosko, Wilk, and Nuair 1980
correlation functional (III) for local correction.[23] The basis set was 6–
31G** for C, N, O, and H atoms and LANL2DZ for Zn atom. Full
geometry optimizations were done in which all the coordinates were
taken from the single-crystal X-ray structure of the molecules. The
optimized geometry was confirmed to be the potential energy minima by
vibrational frequency calculations at the same level of theory as no
imaginary frequencies were found. The orbital surfaces were visualized
by Chemcraft software program. The molecular structures of all the
complexes were also generated and prepared graphically with this
software. The DFT optimized structures of CB1•peryald and CB1•pyald
are displayed in Figures 9A and S34, respectively, and the computed
bond distances and angles of CB1•peryald and CB1•pyald are shown in
Tables S3.
[7]
a) D. M. Kaphan, M. D. Levin, R. G. Bergman, K. N. Raymond, F. D.
Toste, Science 2015, 350, 1235-1238; b) J. Meeuwissen, J. N. H. Reek,
Nat. Chem. 2010, 2, 615-621; c) N. J. Turro, Proc. Natl. Acad. Sci. USA
2005, 102, 10766-10770; d) D. M. Vriezema, A. M. Comellas, J. A. A.
W. Elemans, J. J. L. M. Cornelissen, A. E. Rowan, R. J. M. Nolte,
Chem. Rev. 2005, 105, 1445-1490; e) A. M. Klibanov, Nature 2001,
409, 241-246.
[8]
[9]
a) D. Wrobel, A. Graja, Coord. Chem. Rev. 2011, 255, 2555-2577; b) J.
Rosenthal, D. G. Nocera, Acc. Chem. Res. 2007, 40, 543-553; c) M.
Tanaka, K. Ohkubo, C. P. Gros, R. Guilard, S. Fukuzumi, J. Am. Chem.
Soc. 2006, 128, 14625–14633; d) P. D. W. Boyd, C. A. Reed, Acc.
Chem. Res. 2005, 38, 235-242; e) K. Lang, J. Mosinger, D. M.
Wagnerova, Coord. Chem. Rev. 2004, 248, 321-350.
Supporting information available: Synthetic scheme (Scheme S1),
UV-vis spectral changes of CB with guest ligands (Figures S1, S2),
experimental and simulated ESI-MS spectra of CB1•peryald,
CB2•(peryald)2 and CB3•(peryald)2 (Figures S3, S4), molecular packing
diagrams (Figures S5–S10), crystal data and data collection parameters
(Table S1), 1H NMR spectra (Figures S11, S12), association constant
a) P. Mondal, S. P. Rath, Chem. Eur. J. 2016, 22, 5607-5619; b) P.
Mondal, S. P. Rath, Isr. J. Chem. 2016, 56, 144-155; c) P. Mondal, S. P.
Rath, Eur. J. Inorg. Chem. 2015, 4956-4964; d) P. Mondal, A.
This article is protected by copyright. All rights reserved.