Communication
ChemComm
1348–1349; (c) J. M. Bayne and D. W. Stephan, Chem. Soc. Rev., 2016,
45, 765–774.
of the borane center on the reactivity of the adjacent phosphonium
center is not merely inductive but rather it plays a cooperative role
in enhancing Lewis acid catalyst activity. Indeed, the structural data
for the above fluorophosphonium cations support the notion
that presence of the borane does not impact the Lewis acidity
of the fluorophosphonium cations by direct interaction with
fluoride. Rather the boron center stabilize transiently generated
phosphorane-type intermediates analogous to those previously
proposed for the reaction mechanisms.4a In this way, the
combination of two relatively weak Lewis acids leads to increased
catalytic activity. It is interesting to note that use of even stronger
boron Lewis acids is not expected to improve reactivity further as
the stronger B-Lewis acid binds fluoride irreversibly leading to
the formation of zwitterionic phosphonium-fluoroborates. This
notion has been previously illustrated with the isolation of
Ph2PFC(tol)QC(C6F5)BF(C6F5)2.19
While there is no doubt that the presence of electron-
withdrawing substituents enhances the Lewis acidity of electro-
philic phosphonium cations, this strategy offers limited options
for tailoring these main group Lewis acids. Herein, we have
presented a conceptual alternative that enhances catalytic reac-
tivity of fluorophosphonium compounds. The incorporation of
weakly acidic boron centers enhance the reactivity at the P-based
s*-orbital by providing an avenue to stabilize hypervalent phos-
phoranes reaction intermediates via an intramolecular P–F–B
´
5 M. Perez, C. B. Caputo, R. Dobrovetsky and D. W. Stephan, Proc.
Natl. Acad. Sci. U. S. A., 2014, 111, 10917–10921.
´
6 (a) M. Perez, L. J. Hounjet, C. B. Caputo, R. Dobrovetsky and D. W.
´
Stephan, J. Am. Chem. Soc., 2013, 135, 18308–18310; (b) M. Perez,
Z. W. Qu, C. B. Caputo, V. Podgorny, L. J. Hounjet, A. Hansen,
R. Dobrovetsky, S. Grimme and D. W. Stephan, Chem. – Eur. J., 2015,
21, 6491–6500.
´
7 T. v. Stein, M. Perez, R. Dobrovetsky, D. Winkelhaus, C. B. Caputo
and D. W. Stephan, Angew. Chem., Int. Ed., 2015, 54, 10178–10182.
´
8 M. Mehta, M. H. Holthausen, I. Mallov, M. Perez, Z. W. Qu, S. Grimme
and D. W. Stephan, Angew. Chem., Int. Ed., 2015, 54, 8250–8254.
´
9 M. Mehta, I. G. d. l. Arada, M. Perez, D. Porwal, M. Oestreich and
D. W. Stephan, Organometallics, 2016, 35, 1030–1035.
10 (a) J. M. Bayne, M. H. Holthausen and D. W. Stephan, Dalton Trans.,
2016, 45, 5949–5957; (b) M. H. Holthausen, R. R. Hiranandani and
D. W. Stephan, Chem. Sci., 2015, 6, 2016–2021; (c) M. H. Holthausen,
J. M. Bayne, I. Mallov, R. Dobrovetsky and D. W. Stephan, J. Am.
Chem. Soc., 2015, 137, 7298–7301; (d) M. H. Holthausen, M. Mehta
and D. W. Stephan, Angew. Chem., Int. Ed., 2014, 53, 6538–6541;
(e) E. R. Clark and M. J. Ingleson, Angew. Chem., Int. Ed., 2014, 53,
11306–11309; ( f ) E. R. Clark and M. J. Ingleson, Organometallics,
2013, 32, 6712–6717; (g) J. M. Farrell, R. T. Posaratnanathan and
D. W. Stephan, Chem. Sci., 2015, 6, 2010–2015; (h) J. M. Farrell,
J. A. Hatnean and D. W. Stephan, J. Am. Chem. Soc., 2012, 134,
15728–15731; (i) S. Litters, M. Ganschow, E. Kaifer and H. J.
Himmel, Eur. J. Inorg. Chem., 2015, 5188–5195; ( j) P. Eisenberger,
B. P. Bestvater, E. C. Keske and C. M. Crudden, Angew. Chem., Int.
¨
Ed., 2015, 54, 2467–2471; (k) Y. Kim, H. Zhao and F. P. Gabbaı,
Angew. Chem., Int. Ed., 2009, 48, 4957–4960; (l) C. W. Chiu, Y. Kim
¨
and F. P. Gabbaı, J. Am. Chem. Soc., 2009, 131, 60–61; (m) Y. Kim and
¨
F. P. Gabbaı, J. Am. Chem. Soc., 2009, 131, 3363–3369; (n) K. C. Song,
K. M. Lee, N. V. Nghia, W. Y. Sung, Y. Do and M. H. Lee, Organo-
metallics, 2013, 32, 817–823.
¨
interaction. This finding is an interesting twist on Gabbaı’s
strategy in which a proximal phosphonium center enhanced
fluoride binding at boron. In our case, a proximal boron center
enhances the reactivity at an adjacent fluorophosphonium
center. Current efforts are directed towards exploiting this new
strategy to libraries of group 15 Lewis acid catalysts en route to a
range of new synthetic applications.
D. W. S. gratefully acknowledges the financial support of the
NSERC of Canada and the award of a Canada Research Chair.
J. M. is grateful to the Deutsche Forschungsgemeinschaft for a
postdoctoral fellowship. T. v. S. thanks the Alexander von Humboldt
Foundation for a Feodor Lynen Research Fellowship. J. M. is grateful
to the DFG for a postdoctoral fellowship.
11 (a) H. E. Katz, J. Am. Chem. Soc., 1985, 107, 1421–1423; (b) H. E. Katz,
J. Org. Chem., 1985, 50, 5027–5032; (c) V. C. Williams, W. E. Piers,
W. Clegg, M. R. J. Elsegood, S. Collins and T. B. Marder, J. Am. Chem.
¨
Soc., 1999, 121, 3244–3245; (d) H. Y. Zhao and F. P. Gabbaı, Organo-
¨
´
metallics, 2012, 31, 2327–2335; (e) M. Melaımi, S. Sole, C.-W. Chiu,
¨
H. Wang and F. P. Gabbaı, Inorg. Chem., 2006, 45, 8136–8143;
( f ) W. E. Piers, G. J. Irvine and V. C. Williams, Eur. J. Inorg. Chem.,
2000, 2131–2142; (g) C. Jiang, O. Blacque and H. Berke, Chem. Commun.,
2009, 5518–5520; (h) T. W. Hudnall, Y. M. Kim, M. W. P. Bebbington,
¨
D. Bourissou and F. P. Gabbaı, J. Am. Chem. Soc., 2008, 130,
10890–10891; (i) Y. Li, Y. Kang, J.-S. Lu, I. Wyman, S.-B. Ko and
S. Wang, Organometallics, 2014, 33, 964–973; ( j) C. R. Wade and F. P.
¨
Gabbaı, Organometallics, 2011, 30, 4479–4481; (k) M. Hirai and F. P.
¨
Gabbaı, Angew. Chem., Int. Ed., 2014, 54, 1205–1209.
12 M. Sircoglou, S. Bontemps, M. Mercy, K. Miqueu, S. Ladeira,
N. Saffon, L. Maron, G. Bouhadir and D. Bourissou, Inorg. Chem.,
2010, 49, 3983–3990.
13 A. Krasovskiy and P. Knochel, Angew. Chem., Int. Ed., 2004, 43,
3333–3336.
Notes and references
1 (a) G. C. Welch and D. W. Stephan, J. Am. Chem. Soc., 2007, 129, 14 P. G. Eller and D. W. Meek, J. Organomet. Chem., 1970, 22, 631–636.
1880–1881; (b) J. S. J. McCahill, G. C. Welch and D. W. Stephan, 15 (a) G. S. Reddy and R. Schmutzler, Z. Naturforsch., B: J. Chem. Sci.,
Angew. Chem., Int. Ed., 2007, 46, 4968–4971; (c) G. C. Welch,
R. R. S. Juan, J. D. Masuda and D. W. Stephan, Science, 2006, 314,
1124–1126.
2 (a) D. W. Stephan and G. Erker, Angew. Chem., Int. Ed., 2015, 54,
6400–6441; (b) D. W. Stephan and G. Erker, Angew. Chem., Int. Ed.,
1970, 25, 1199–1214; (b) K. M. Doxsee, E. M. Hanawalt and
T. J. R. Weakley, Inorg. Chem., 1992, 31, 4420–4421.
16 (a) C. B. Caputo, D. Winkelhaus, R. Dobrovetsky, L. J. Hounjet and
D. W. Stephan, Dalton Trans., 2015, 44, 12256–12264; (b) L. J. Hounjet,
C. B. Caputo and D. W. Stephan, Dalton Trans., 2013, 42, 2629–2635.
2010, 49, 46–76; (c) D. W. Stephan, J. Am. Chem. Soc., 2015, 137, 17 L. J. Hounjet, C. B. Caputo and D. W. Stephan, Angew. Chem., Int. Ed.,
10018–10032; (d) D. W. Stephan, Acc. Chem. Res., 2015, 48, 306–316. 2012, 51, 4714–4717.
3 S. A. Weicker and D. W. Stephan, Bull. Chem. Soc. Jpn., 2015, 88, 18 The DMAP adducts of 10 and 11 were not observed; presumably a
1003–1016. result of steric and alternate reactivity respectively.
4 (a) C. B. Caputo, L. J. Hounjet, R. Dobrovetsky and D. W. Stephan, 19 O. Ekkert, C. B. Caputo, C. Pranckevicius, C. G. Daniliuc, G. Kehr,
¨
Science, 2013, 341, 1374–1377; (b) F. P. Gabbaı, Science, 2013, 341,
G. Erker and D. W. Stephan, Chem. – Eur. J., 2014, 20, 11287–11290.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2016