2968
Scheme 4. Reagents and conditions: (i) Ref. 8; (ii) 10% Cu(acac)2, benzene, 80°C, 5 min; (iii) Zn, NH4Cl, ether, rt
The enantiopure α-acetoxy diazoketones 17a,b,8 readily prepared from the α-hydroxy acid chiral
pool, also participated in this two-step sequence to produce the α-acetoxy homoallyl ketones 19a,b in
somewhat better yields (Scheme 4). The latter promises to have important uses in the synthesis of deoxy-
C-glycosides.
In summary, we have shown that Cu-catalyzed reactions of enantiopure α-diazoketones with allyl
sulfides provide a facile synthetic route to enantiopure α-amino and α-hydroxy homoallyl ketones having
broad synthetic ramifications. Allyl selenides also reacted with these diazoketones in a similar fashion,12
but catalyzed reactions of 3 with benzyl sulfides/selenides have so far produced only complex product
mixtures. Syntheses of the 2,6-disubstituted-3-piperidinol alkaloids using the α-amino homoallyl ketones
prepared in this work are currently under investigation.
Acknowledgements
DST (SP/S1/G-14/97) and UGC (senior research fellowship to S.M.) are warmly thanked for financial
support.
References
1. Strunz, G. M.; Findlay, J. A. In The Alkaloids; Brossi, A., Ed.; Academic Press: New York, 1985; Vol. 26, Ch. 3.
2. For some recent syntheses, see: (a) Ojima, I.; Vidal, E. S. J. Org. Chem. 1998, 63, 7999; (b) Kiguchi, T.; Shirakawa, M.;
Honda, R.; Ninomiya, I.; Naito, T. Tetrahedron 1998, 54, 15 589; (c) Agami, C.; Couty, F.; Lam, H.; Mathieu, H. Tetrahedron
1998, 54, 8783; (d) Momose, T.; Toyooka, N.; Jin, M. J. Chem. Soc., Perkin Trans. 1 1997, 2005; (e) Oetting, J.; Holzkamp,
J.; Meyer, H. H.; Pahl, A. Tetrahedron: Asymmetry 1997, 8, 477; (f) Kadota, I.; Kawada, M.; Muramatsu, Y.; Yamamoto, Y.
Tetrahedron Lett. 1997, 38, 7469; (g) Luker, T.; Hiemstra, H.; Speckamp, W. N. J. Org. Chem. 1997, 62, 3592; (h) Hirai, Y.;
Watanabe, J.; Nozaki, T.; Yokoyama, H.; Yamaguchi, S. J. Org. Chem. 1997, 62, 776.
3. Sibi, M. P. Org. Prep. Proc. Int. 1993, 25, 15.
4. O’Neill, B. T. In Comprehensive Organic Synthesis; Trost, B. M.; Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 1,
p. 397.
5. Padwa, A.; Weingarten, M. D. Chem. Rev. 1996, 96, 223.
6. (a) Giddings, P. J.; John, D. I.; Thomas, E. J.; Williams, D. J. J. Chem. Soc., Perkin Trans. 1 1982, 2757; (b) Giddings, P. J.;
John, D. I.; Thomas, E. J. Tetrahedron Lett. 1980, 21, 399; (c) Giddings, P. J.; John, D. I.; Thomas, E. J. Tetrahedron Lett.
1980, 21, 395.
7. (a) Doyle, M. P.; McKervey, M. A. J. Chem. Soc., Chem. Commun. 1997, 983; (b) Ye, T.; McKervey, M. A. Chem. Rev.
1994, 94, 1091.
8. Sengupta, S.; Sen Sarma, D.; Mondal, S. Synth. Commun. 1998, 28, 4409.
9. (a) Carter, D. S.; Van Vranken, D. L. Tetrahedron Lett. 1999, 40, 1617; (b) Aggarwal, V. K.; Ferrara, M.; Hainz, R.; Spey,
S. E. Tetrahedron Lett. 1999, 40, 8923, and references cited therein.
10. Holton, R. A.; Crouse, D. J.; Williams, A. D.; Kennedy, R. M. J. Org. Chem. 1987, 52, 2317.
11. All new compounds gave satisfactory spectral data. A typical procedure: (S)-6-Ethoxycarbonylamino-5-oxo-hept-1-ene
(6a): A solution of 3a (0.11g, 0.6 mmol), allyl phenyl sulfide (0.18 g, 1.2 mmol) and Cu(acac)2 (10 mol%) in benzene
(1.2 ml) was immersed in an oil bath preheated to 80°C. After 5 min, the benzene was removed at reduced pressure and
CH2Cl2 (5 ml) was added. It was then washed with water, dried and evaporated to give 5a (diastereomeric mixture) which
was purified by preparative TLC over silica gel (30% EtOAc in pet. ether). Activated Zn (0.40 g) and satd NH4Cl soln (2.5