10.1002/anie.201707505
Angewandte Chemie International Edition
COMMUNICATION
(Fc/Fc+) couple. The HOMO and LUMO energies of 8a were
estimated to be −5.90 and −2.65 eV, respectively (see SI for
details). In comparison to 8a, the dodecamethoxy derivative 8b
[2]
[3]
[4]
(a) B. R. Venepalli, W. C. Agosta, Chem. Rev. 1987, 87, 399410; (b)
W. C. Agosta, in S. Patai, Z. Rappoport (Eds.), The Chemistry of
Alkanes and Cycloalkanes, Wiley, New York, 1992; pp. 927962.
(a) W. Luef, R. Keese, in B. Halton (Ed.), Advances in Strain in Organic
Molecules, Vol. 3, JAI Press, Greenwich, CT, 1993, pp. 229267; (b) R.
Keese, Chem. Rev. 2006, 106, 47874808.
(a) D. Kuck, in R. P. Thummel (Ed.), Advances in Theoretically
Interesting Molecules, Vol. 4, JAI Press, Greenwich, London, 1998, pp.
81155; (b) D. Kuck, Chem. Rev. 2006, 106, 48854925.
has
a similar absorption edge (371 nm, 3.33 eV) and
fluorescence wavelength (416 nm) (see SI Figure S13b and
S14b), and a similar half-wave oxidation potential (+0.75 V).
Likewise, the HOMO and LUMO levels of compound 8b were
estimated to be −5.91 and −2.58 eV, respectively.
[5]
[6]
A. Boudhar, M. Charpenay, G. Blond, J. Suffert, Angew. Chem. Int. Ed.
2013, 52, 1278612798; Angew. Chem. 2013, 125, 1302013032.
D. Röttger, G. Erker, Angew. Chem. Int. Ed. Engl. 1997, 36, 812827;
Angew. Chem. 1997, 109, 840856.
Table 1. Photoelectronic and cyclic voltammetric properties of compounds 8.
[7]
[8]
W. Siebert, A. Gunale, Chem. Soc. Rev. 1999, 28, 367371.
R. E. Corbett, D. R. Lauren, R. T. Weavers, J. Chem. Soc., Perkin
Trans. 1 1979, 17741790.
Compound
8a
8b
Low-energy absorption edge, λedge (nm)
Fluorescence emission (nm)[a]
HUMO-LUMO gap (eV)[b]
382
371
[9]
H. J. Monkhorst, J. Chem. Soc. Chem. Commun. 1968, 11111112.
[10] (a) R. Hoffmann, R. W. Alder, C. F. Wilcox, Jr., J. Am. Chem. Soc. 1970,
92, 49924993; (b) Hoffmann, R. Pure Appl. Chem. 1971, 28, 181194.
[11] M. C. Böhm, R. Gleiter, P. Schang, Tetrahedron Lett. 1979, 20, 2575
2578.
424
416
3.25
3.33
Half-wave oxidation potential (V)[c]
First oxidation onset, Eox1onset (V)
HOMO level (eV)[d]
+0.76
+0.80
–5.90
–2.65
+0.75
+0.81
–5.91
–2.58
[12] (a) E. U. Würthwein, J. Chandrasekhar, E. D. Jemmis, P. v. R. Schleyer,
Tetrahedron Lett. 1981, 22, 843846; (b) J. Chandrasekhar, E. U.
Würthwein, P. v. R. Schleyer, Tetrahedron 1981, 37, 921927.
[13] (a) W. Luef, R. Keese, Helv. Chim. Acta 1987, 70, 543553; (c) P.
Macchi, W. Jing, R. Guidetti-Grept, R. Keese, Tetrahedron 2013, 69,
24792483.
LUMO level (eV)[e]
[14] D. R. Rasmussen, L. Radom, Angew. Chem. Int. Ed. 1999, 38, 2875
2878; Angew. Chem. 1999, 111, 30513054.
[a] Excitation at 280 nm. [b] Approximated by the long-wavelength UV
absorption edge by 1239.8/λedge. [c] Supporting electrolyte: 0.1 M n-Bu4PF6
in CH2Cl2, scan rate 50 mV/s, Fc/Fc+ as reference. [d] Estimated from the
onset potential of the first oxidation wave by EHOMO = −(5.10 + Eox1onset) eV.[34]
[e] Estimated by the HOMO level and HOMO-LUMO gap.
[15] See also: (a) H. Hopf, Classics in Hydrocarbon Chemistry Syntheses,
Concepts, Perspectives, Wiley-VCH, Weinheim, 2000, pp. 8894; (b) K.
Krohn, in J. Mulzer, H.-J. Altenbach, M. Braun, K. Krohn, H.-U. Reissig
(Eds.), Organic Synthesis Highlights, VCH Verlagsgesellschaft,
Weinheim, 1991, pp. 371377.
[16] (a) S. Wolff, B. R. Venepalli, C. F. George, W. C. Agosta, J. Am. Chem.
Soc. 1988, 110, 67856790; (b) P. A. Grieco, E. B. Brandes, S.
McCann, J. D. Clark, J. Org. Chem. 1989, 54, 58495851; (c) R. Keese,
Angew. Chem. Int. Ed. 1992, 31, 344345; Angew. Chem. 1992, 104,
307309.
[17] M. Luyten, R. Keese, Angew. Chem. Int. Ed. 1984, 23, 390391;
Angew. Chem. 1984, 96, 358359.
[18] M. N. Deshpande, M. Jawdosiuk, G. Kubiak, M. Venkatachalam, U.
Weiss, J. M. Cook, J. Am. Chem. Soc. 1985, 107, 47864788.
[19] (a) D. Kuck, H. Bögge, J. Am. Chem. Soc. 1986, 108, 81078109; (b) D.
Kuck, Chem. Ber. 1994, 127, 409425.
[20] For selected examples of warped nanographenes based on the
incorporation of the heptagonal ring, see (a) K. Yamamoto, T. Harada,
M. Nakazaki, J. Am. Chem. Soc. 1983, 105, 7171–7172; (b) K.
Yamamoto, Y. Saitho, D. Iwaki, T. Ooka, Angew. Chem. Int. Ed. 1991,
30, 1173–1174; Angew. Chem. 1991, 103, 1202–1203; (c) A. Pradhan,
P. Dechambenoit, H. Bock, F. Durola, J. Org. Chem. 2013, 78, 2266–
2274; (d) J. Luo, X. Xu, R. Mao, Q. Miao, J. Am. Chem. Soc. 2012, 134,
13796–13803; (e) K. Kawasumi, Q. Zhang, Y. Segawa, L. T. Scott, K.
Itami, Nat. Chem. 2013, 5, 739–744; (f) K. Y. Cheung, X. Xu, Q. Miao, J.
Am. Chem. Soc. 2015, 137, 3910–3914; (g) K. Kato, Y. Segawa, L. T.
Scott, K. Itami, Chem. Asian J. 2015, 10, 1635–1639.
In summary, we reported here the synthesis of two novel
saddle-shaped polycyclic aromatic compounds 8a and 8b based
on the fenestrindane framework using a four-fold Scholl-type
cycloheptatriene formation reaction. The structural features of
these compounds and their optical and electronic properties
were examined. With the peripheral methoxy groups being
available for further functionalization and C–C cross coupling
reactions, these molecules should provide access to various
novel π–extended saddle-shaped nanographenes.
Acknowledgements
This work is supported by the RGC-CRF (project no: C4030-
14G) and UGC-AoE (project no: AoE/P-03/08) of HKSAR.
Keywords: fenestrane • polyaromatic compounds • Scholl
cyclization • nanographene • saddle-shaped structures
[21] For selected examples of warped nanographenes due to steric
contortion, see (a) J. Lu, D. M. Ho, N. J. Vogelaar, C. M. Kraml, R. A.
Pascal, Jr., J. Am. Chem. Soc. 2004, 126, 11168–11169; (b) S. Xiao, S.
J. Kang, Y. Wu, S. Ahn, J. B. Kim, Y.-L. Loo, T. Siegrist, M. L.
Steigerwald, H. Li, C. Nuckolls, Chem. Sci. 2013, 4, 2018–2023; (c) H.
Arslan, F. J. Uribe-Romo, B. J. Smith, W. R. Dichtel, Chem. Sci. 2013,
4, 3973–3978; (d) T. Fujikawa, Y. Segawa, K. Itami, J. Am. Chem. Soc.
2015, 137, 7763–7768; (e) J. Liu, A. Narita, S. Osella, W. Zhang, D.
Schollmeyer, D. Belijonne, X. Feng, K. Müllen, J. Am. Chem. Soc. 2016,
138, 2602–2608; (f) K. Baumgärtner, A. L. M. Chincha, A. Dreuw, F.
[1]
(a) A. Greenberg, J. F. Liebman, Strained Organic Molecules, Organic
Chemistry: A Series of Monographs, Vol. 38, Academic Press, New
York, 1978, pp. 369375; (b) H. Dodziuk, in H. Dodziuk (Ed.), Strained
Hydrocarbons – Beyond the van’t Hoff and LeBel Hypothesis, Wiley-
VCH, Weinheim, 2009, pp. 4449.
This article is protected by copyright. All rights reserved.