A R T I C L E S
Driver and Woerpel
cyclopropane 131,39 to various chiral, functionalized alkenes (eq
1).40 This reaction is stereospecific, stereoselective, and tolerant
of various functional groups. Because silver-catalyzed silylene
transfer has proven to be a mild method for the silacyclopro-
panation of alkenes, we believed that a detailed mechanistic
understanding of this reaction would guide future improvements
in silacyclopropane synthesis.
To understand the fundamental reactivity of the intermediates
in the silver-catalyzed formation of silacyclopropanes, we
conducted a quantitative analysis of the behavior of cyclohexene
silacyclopropane 1 in the presence of an alkene and a catalytic
amount of a silver salt. Analysis of the kinetic behavior and
the spectroscopic observation of a silylsilver intermediate led
us to propose a mechanism likely involving reversible silver-
catalyzed extrusion of di-tert-butylsilylenoid from silacyclo-
propane 1 followed by irreversible cyclization with an alkene.
The electrophilicity of the silylsilver intermediate was estab-
lished by the identification of a Hammett F value. These results
and data from competition experiments permitted construction
of a reasonable catalytic cycle to describe the silver-mediated
silylene transfer from 1 to an alkene.
The mechanisms of analogous silver-promoted carbene
transfer reactions remain poorly understood,41-43 although other
metal-mediated carbene transfer reactions44-49 have been studied
extensively. In general, silver-catalyzed reactions50 provide
different products from copper-catalyzed processes, because the
silver-mediated reactions likely proceed by free carbenes, not
metal carbenoids.51-55 By analogy, the silver-promoted silylene
transfer could involve a free silylene intermediate, or it could
proceed via a silver silylenoid species.56,57 Because of these
ambiguities, we believed a quantitative study was needed to
eliminate a mechanism involving free silylene as a reactive
intermediate.
Results and Discussion
Influence of Catalyst on Reaction Rate. Insight into the
mechanism of silver-promoted di-tert-butylsilylene transfer from
cyclohexene silacyclopropane 1 to an alkene began with the
optimization of experimental conditions. To facilitate kinetic
1
analysis using H NMR spectroscopy, a reproducible reaction
that occurred at a moderate rate around 0 °C was sought.
Extensive experimentation was required to identify the optimum
silver salt to fulfill this requirement. Many silver salts promoted
this reaction at low temperatures (e25 °C, eq 2). The duration
of the reaction time, however, was found to be dependent upon
the counterion. The half-life of silylene transfer varied from 30
min at -35 °C employing 5 mol % of AgOTf or AgOCOCF3
to greater than 8 h at 25 °C with 5 mol % of Ag3PO4.
(38) Lee, M. E.; Cho, H. M.; Ryu, M. S.; Kim, C. H.; Ando, W. J. Am. Chem.
Soc. 2001, 123, 7732-7733.
(39) Driver, T. G.; Franz, A. K.; Woerpel, K. A. J. Am. Chem. Soc. 2002, 124,
6524-6525.
(40) CÄ irakovic´, J.; Driver, T. G.; Woerpel. K. J. Am. Chem. Soc. 2002, 124,
9370-9371.
(41) Takebayashi, M.; Ibata, T. Bull. Chem. Soc. Jpn. 1968, 41, 1700-1707.
(42) Duggleby, P. McM.; Holt, G.; Hope, M. A.; Lewis, A. J. Chem. Soc., Perkin
Trans. 1 1972, 3020-3024.
(43) Sudrik, S. G.; Maddanimath, T.; Chaki, N. K.; Chavan, S. P.; Chavan, S.
P.; Sonawane, H. R.; Vijayamohanan, K. Org. Lett. 2003, 5, 2355-2358.
(44) Salomon, R. G.; Kochi, J. K. J. Am. Chem. Soc. 1973, 95, 3300-3310.
(45) Doyle, M. P.; Griffin, J. H.; Bagheri, V.; Dorow, R. L. Organometallics
1984, 3, 53-61.
(46) Maxwell, J. L.; Brown, K. C.; Bartley, D. W.; Kodadek, T. Science 1992,
256, 1544-1547.
(47) D´ıaz-Requejo, M. M.; Belderrain, T. R.; Nicasio, M. C.; Prieto, F.; Pe´rez,
P. J. Organometallics 1999, 18, 2601-2609.
(48) Straub, B. F.; Hofmann, P. Angew. Chem., Int. Ed. 2001, 40, 1288-1290.
(49) Fraile, J. M.; Garc´ıa, J. I.; Mart´ınez-Merino, V.; Mayoral, J. A.; Salvatella,
L. J. Am. Chem. Soc. 2001, 123, 7616-7625.
(50) For recent reports of other silver or gold catalyzed reactions, see (a)
Longmire, J. M.; Wang, B.; Zhang, X. J. Am. Chem. Soc. 2002, 124,
13400-13401. (b) Momiyama, N.; Yamamoto, H. J. Am. Chem. Soc. 2003,
125, 6038-6039. (c) Dias, H. V. R.; Browning, R. G.; Polach, S. A.;
Diyabalanage, H. V. K.; Lovely, C. J. J. Am. Chem. Soc. 2003, 125, 9270-
9271. (d) Wei, C.; Li, C.-J. J. Am. Chem. Soc. 2003, 125, 9584-9585. (e)
Chen, C.; Li, X.; Schreiber, S. L. J. Am. Chem. Soc. 2003, 125, 10174-
10175.
(51) Kirmse, W. Carbene Chemistry; Academic Press: New York, 1971; Vol.
1, pp 257-260 and 475-493.
(52) Jones, M., Jr.; Moss, R. A. ReactiVe Intermediates in Organic Chemistry;
Wiley: New York, 1973; Vol. 1, p 107-114.
(53) Agosta, W. C.; Wolff, S. J. Org. Chem. 1975, 40, 1027-1030.
(54) Doyle, M. P.; McKervey, M. A.; Ye, T. Modern Catalytic Methods for
Organic Synthesis with Diazo Compounds; Wiley: New York, 1998.
(55) Julian, R. R.; May, J. A.; Stoltz, B. M.; Beauchamp, J. L. J. Am. Chem.
Soc. 2003, 125, 4478-4486.
(56) For recent examples of metal silylenoids refer to: (a) Shimada, S.; Rao,
M. L. N.; Hayashi, T.; Tanaka, M. Angew. Chem., Int. Ed. 2001, 40, 213-
216. (b) Zhang, Y.; Cervantes-Lee, F.; Pannell, K. H. Organometallics 2003,
22, 2517-2524. (c) Antolini, F.; Gehrhus, B.; Hitchcock, P. B.; Lappert,
M. F. Angew. Chem., Int. Ed. 2002, 41, 2568-2571. (d) Klei, S. R.; Tilley,
T. D.; Bergman, R. G. Organometallics 2002, 21, 4648-4661. (e) Theil,
M.; Jutzi, P.; Neumann, B.; Stammler, A.; Stammler, H.-G. J. Organomet.
Chem. 2002, 662, 34-42. (f) Amoroso, D.; Haaf, M.; Yap, G. P. A.; West,
R.; Fogg, D. E. Organometallics 2002, 21, 534-540. (g) Sato, T.; Okazaki,
M.; Tobita, H.; Ogino, H. J. Organomet. Chem. 2003, 669, 189-199. (h)
Okazaki, M.; Tobita, H.; Ogino, H. J. Chem. Soc., Dalton Trans. 2003, 4,
493-506.
(57) For additional metal-catalyzed reactions of silacycles see: (a) Ohshita, J.;
Ishikawa, M. J. Organomet. Chem. 1991, 407, 157-165. (b) Naka, A.;
Lee, K. K.; Yoshizawa, K.; Yamabe, T.; Ishikawa, M. J. Organomet. Chem.
1999, 587, 1-8. (c) Kang, S.-Y.; Yamabe, T.; Naka, A.; Ishikawa, M.;
Yoshizawa, K. Organometallics 2002, 21, 150-160. (d) Kang, S. O.; Lee,
J.; Ko, J. Coord. Chem. ReV. 2002, 231, 47-65.
During the screening of different silver salts, several chal-
lenges arose. Monitoring the progress of reactions using more-
reactive silver salts such as AgOTf or AgOCOCF3 was difficult.
Agitation of the cold (-78 °C) reaction mixture before
placement in a cold (-40 °C) NMR probe induced reaction up
to 20%. The accumulation of Ag(0) as a mirror or precipitate
as the reaction progressed represented an additional obstacle.
The combination of these challenges led to irreproducible data.
The addition of ancillary ligands was postulated to address
the aforementioned challenges by limiting the decomposition
of the catalyst through the stabilization of reactive intermediates.
The use of phosphine ligands allowed the rate of silylene transfer
1
to be studied conveniently using H NMR spectroscopy. The
substituents on phosphine were varied to observe their impact
on reaction rate (eq 3). Alkyl phosphines were found to inhibit
the reaction. While no reaction was observed employing t-Bu3P,
silylene transfer took place using Cy3P only at temperatures in
excess of 60 °C. At this temperature, silylene transfer occurs
thermally.23 Aryl substituents on phosphine, conversely, facili-
tated silylene transfer at 25 °C without significant catalyst
decomposition.
9
9994 J. AM. CHEM. SOC. VOL. 126, NO. 32, 2004