3404
J . Org. Chem. 2000, 65, 3404-3408
P a lla d iu m -Ca ta lyzed ter t-Bu toxyca r bon yla tion of
Tr iflu or oa cetim id oyl Iod id es
Hideki Amii, Yosuke Kishikawa, Katsuhiko Kageyama, and Kenji Uneyama*
Department of Applied Chemistry, Faculty of Engineering, Okayama University,
Okayama 700-8530, J apan
Received December 14, 1999
A modification and details of the palladium-catalyzed tert-butoxycarbonylation of 2,2,2-trifluoro-
acetimidoyl iodides 1, which gave the iminocarboxylates 2, one of the promising precursors to
fluorinated R-amino acids, are described. The Pd-catalyzed carbonylation reaction was remarkably
promoted by the use of DMF or DMI as an additive, enough to achieve the selective formation of
tert-butyl iminoesters. Nucleophilic alkylation of the imine moiety of 2 and subsequent removal of
N- and O-protecting groups gave a variety of 2-substituted 2-amino-3,3,3-trifluoropropanoic acid
derivatives 3 in high yields.
In tr od u ction
processes for the introduction of a carbonyl group into
the molecule.8 The facile CO insertion into organometallic
compounds, followed by the nucleophilic attack of various
nucleophiles, affords ketones,9 carboxylic acids,10 esters,11
and amides.12 Carboalkoxylation of organic halides gives
the homologated esters by the use of a catalytic amount
of transition metal complexes. While much has been
learned preparing the methyl, ethyl, and n-butyl esters
as a carboalkoxylation product, to our knowledge very
few studies have been performed on the synthesis of the
tert-butyl esters,13,14 which act as an easily removable
O-protecting group. One serious drawback to the transi-
tion-metal-catalyzed carboalkoxylation of organic halide
is the structural restriction, especially of the reactant
alcohols. Actually, methanol, butanol, and benzyl alcohol
can be used and gave the corresponding esters in good
yield, whereas with tertiary alcohols, the carbonylation
did not work well, probably as a result of steric hindrance
of the alcohol nucleophiles.13,15 For example, Tanaka15a
and Watanabe15b reported that the reactions of organic
Fluorinated amino acids and peptides are an important
class of unnatural molecules that have been successfully
used in an expanded repertoire of biological applications,
and they are receiving increasing attention in the me-
dicinal, agricultural, and material sciences.1,2 These
compounds owe their unique biological properties to the
profound electron-withdrawing effect caused by fluorine
atom(s) that occurs without significant steric conse-
quence. Some fluorine-containing amino acid derivatives
exhibit enzyme inhibition activities.3 So, the development
of new synthetic methodology for preparing fluorine-
containing R-amino acids is of particular interest.4,5
Despite a growing interest, there are few synthetic
methods available for the preparation of fluoro R-amino
acids, and many of these methods utilize hazardous and
expensive reagents or require harsh reaction conditions.6
A more practical and general preparative method must
be devised.7
The transition-metal-catalyzed carbonylation of organic
halides is one of the most versatile and convenient
(7) For recent reports, see (a) Soloshonok, V. A.; Avilov, D. V.;
Kukhar, V. P. Tetrahedron: Asymmetry 1996, 7, 1547. (b) Soloshonok,
V. A.; Kukhar, V. P. Tetrahedron 1997, 53, 8307. (c) Shi, G.-Q.; Cao,
Z.-Y.; Zhang, X.-B. J . Org. Chem. 1995, 60, 6608. (d) Bravo, P.;
Crucianelli, M.; Vergani, B.; Zanda, M. Tetrahedron Lett. 1998, 39,
7771. (e) Percy, J . M.; Prime, M. E.; Broadhurst, M. J . J . Org. Chem.
1998, 63, 8049. (f) Osipov, S. N.; Golubev, A. S.; Sewald, N.; Michel,
T.; Kolomiets, A. F.; Fokin, A. V.; Burger, K. J . Org. Chem. 1996, 61,
7521. (g) Osipov, S. N.; Bruneau, C.; Picquet, M.; Kolomiets, A. F.;
Dixneuf, P. H. Chem. Commun. 1998, 2053. (h) Fustero, S.; Pina, B.;
Garc´ıa de la Torre, M.; Navarro, A.; Ram´ırez de Arellano, C.; Simo´n,
A. Org. Lett. 1999, 1, 977.
(8) (a) Heck, R. F. Palladium Reagents in Organic Syntheses;
Academic Press: New York, 1985. (b) Colquhoun, H. M.; Thompson,
D. J .; Twigg, M. V. Carbonylation; Plenum Press: New York, 1991.
(c) Tsuji, J . Palladium Reagents and Catalysts; J ohn Wiley & Sons:
New York, 1995. (d) Grushin, V. V.; Alper, H. Chem. Rev. 1994, 94,
1047.
* Ph: 81-86-251-8075. Fax: 81-86-251-8075. E-mail: uneyamak@
cc.okayama-u.ac.jp.
(1) (a) Welch, J . T.; Eswarakrishnan, S. Fluorine in Bioorganic
Chemistry; J ohn Wiley & Sons: New York, 1991. (b) Biomedical
Frontiers of Fluorine Chemistry; Ojima, I.; McCarthy, J . R.; Welch, J .
T., Eds.; ACS Symposium Series 639; American Chemical Society:
Washington, DC, 1996. (c) Filler, R.; Kobayashi, Y. Biomedicinal
Aspects of Fluorine Chemistry; Kodansha Ltd.: Tokyo, 1982. (d)
Synthesis and Speciality of Organofluorine Compounds; Ishikawa, N.,
Ed.; CMC: Tokyo, 1987. (e) Biologically Active Organofluorine Com-
pounds; Ishikawa, N., Ed.; CMC: Tokyo, 1990.
(2) Kukhar, V. P.; Soloshonok, V. A. Fluorine-containing Amino
Acids: Synthesis and properties; J ohn Wiley & Sons: New York, 1995.
(3) (a) Faraci, W. S.; Walsh, C. T. Biochemistry 1989, 28, 431. (b)
Kumadaki, I. J . Synth. Org. Chem. J pn. 1984, 42, 786. (c) Kollonitsch,
J . Isr. J . Chem. 1978, 17, 53.
(4) Uneyama, K. In Enantiocontrolled Synthesis of Fluoro-Organic
Compounds; Soloshonok, V. A., Ed.; J ohn Wiley & Sons, Ltd.: Chich-
ester, 1999; pp 391-418.
(9) (a) Tanaka, M. Tetrahedron Lett. 1979, 28, 2601. (b) Kobayashi,
T.; Tanaka, M. J . Organomet. Chem. 1981, 205, C27.
(10) Bumagin, N. A.; Nikitin, K. V.; Beletskaya, I. P. J . Organomet.
Chem. 1988, 358, 563.
(5) Welch, J . T. Tetrahedron 1987, 43, 3123.
(6) (a) Bey, P.; Vevert, J . P.; Van Dorrelaer, V.; Kolb, M. J . Org.
Chem. 1979, 44, 2732. (b) Metcalf, B. W.; Bey, P.; Danzin, C.; J ung,
M. J .; Casara, P.; Vevert, J . P. J . Am. Chem. Soc. 1978, 100, 2551. (c)
Weygand, F.; Steglich, W.; Oettmeier, W.; Maierhofer, A.; Roy, R. S.
Angew. Chem., Int. Ed. Engl. 1966, 5, 600. (d) Burger, K.; Hubl, D.;
Gertitschke, P. J . Fluorine Chem. 1985, 27, 327. (e) Knunyants, I. L.;
Shokina, V. V.; Tyuleneva, V. V. Dokl. Akad. Nauk SSSR 1966, 169,
594; Proc. Acad. Sci. USSR, Chem. Sect. 1966, 169, 722; Chem. Abstr.
1966, 65, 15218d.
(11) (a) Schoenberg, A.; Bartoletti, I.; Heck, R. F. J . Org. Chem. 1974,
39, 3318. (b) Stille, J . K.; Wong, P. K. J . Org. Chem. 1975, 40, 532.
(12) (a) Schoenberg, A.; Heck, R. F. J . Org. Chem. 1974, 39, 3327.
(b) Futigami, T.; Ojima, I. Tetrahedron Lett. 1982, 23, 4099.
(13) Huth, A.; Beetz, I.; Schumann, I.; Thielert, K. Tetrahedron Lett.
1986, 27, 1071.
(14) (a) Adapa, S. R.; Prasad, C. S. N. J . Chem. Soc., Perkin Trans.
1 1989, 1706. (b) Alper, H.; Hamel, N.; Smith, D. J . H.; Woell, J . B.
Tetrahedron Lett. 1985, 26, 2273.
10.1021/jo991917n CCC: $19.00 © 2000 American Chemical Society
Published on Web 04/28/2000