esis,7 metal-catalyzed allylic substitution,8 radical cycliza-
tion,9 reductive cyclizations of carbonyl compounds,10 and
a variety of [3 + 2]-annulations.11
to be the least predictable”.16 A number of recent efforts
have addressed this limitation,17 and new methods continue
to warrant further development.
In developing potential solutions to the foregoing stereo-
control problem, our attention was drawn to two studies
of bicyclic acetals. In 1999, Veyrieres reported a highly
diastereoselective allylsilane addition reaction upon a 2,7-
dioxabicyclo[2.2.1]heptane ring system (Figure 3a).18 The
The C-glycosidic disconnection of oxacyclic compounds,
i.e., addition to cyclic oxocarbenium ions (Figure 2a),12
Figure 3. Reactivity of bicyclic acetals. (a) Reaction of an
anhydropyranose with a C-nucleophile; the tetrahydropyran product
is disfavored. (b) Relative rates of hydrolysis of 1 and acetaldehyde
dimethyl acetal differ by a factor of 104.
Figure 2. Stereocontrol by the 5-substituent in addition of C-
nucleophiles to 5-membered cyclic oxocarbenium ions.
tetrahydrofuran product was not accompanied by the tet-
rahydropyran regioisomer.19 The preparation and reactivities
of bicyclic acetal 1 (Figure 3b) were examined by Hall and
co-workers, revealing rapid rates of acid-catalyzed hydrolysis
(krel ) 2.5 × 104 versus acyclic acetaldehyde dimethyl
acetal).20 Ring strain activation of the pathway to oxocar-
benium ion intermediates is implied.21 The acetals in bicyclic
ring systems depicted in Figure 3 bear an internally tethered
leaving group, a feature absent from the Reissig and Woerpel
precedents (Figure 2). These considerations inspired the
hypothesis that C-C bond forming reactions upon the 2,7-
dioxabicyclo[2.2.1]heptane ring system might address the
longstanding stereocontrol problem highlighted in Figure 2.
We now report tests of this hypothesis, using reactions of
bicyclic acetal 1 with various C-nucleophiles in the presence
of Lewis acids.
represents a simple yet powerful strategy in which C-C bond
construction and stereoselection are achieved concurrently.
Thus, there have been numerous studies of the fundamental
stereochemical behavior of five-membered cyclic oxocarbe-
nium ions, notably by Reissig13 and Woerpel14 (Figure 2).
Woerpel concluded about trans-2,5-disubstituted tetrahydro-
furans that “controlling this array has been challenging”,15
and Reissig noted that efforts to access this substitution
pattern by allylsilane additions to oxocarbenium ions “seem
(7) (a) Schaus, S. E.; Branalt, J.; Jacobsen, E. N. J. Org. Chem. 1998,
63, 4876–4877. (b) Schneider, M. F.; Lucas, N.; Velder, J.; Blechert, S.
Angew. Chem., Int. Ed. Engl. 1997, 36, 257–259. (c) Louie, J.; Bielawski,
C. W.; Grubbs, R. H. J. Am. Chem. Soc. 2001, 123, 11312–11313. (d) Liu,
Z.; Rainier, J. D. Org. Lett. 2005, 7, 131–133.
(8) (a) Trost, B. M. J. Org. Chem. 2004, 69, 5813–5837. (b) Jiang, L.;
Burke, S. D. Org. Lett. 2002, 4, 3411–3414.
(9) (a) Evans, P. A.; Manangan, T. Tetrahedron Lett. 1997, 38, 8165–
8168. (b) Lee, E.; Song, H. Y.; Kim, H. J. J. Chem. Soc., Perkin Trans. 1
1999, 3395–3396. (c) Sibi, M. P.; Patil, K.; Rheault, T. R. Eur. J. Org.
Chem. 2004, 372–384.
(16) See page 3894 of ref 13.
(17) For a review, see ref 3. Selected recent examples: (a) Donohoe,
T. J.; Williams, O.; Churchill, G. H. Angew. Chem., Int. Ed. 2008, 47, 2869–
2871. (b) Pilli, R. A.; Riatto, V. B. J. Braz. Chem. Soc. 2008, 19, 583–599.
(c) Menendez Perez, B.; Schuch, D.; Hartung, J. Org. Biomol. Chem. 2008,
6, 3532–3541. (d) Fernandez de la Pradilla, R.; Castellanos, A.; Osante, I.;
Colomer, I.; Sanchez, M. I. J. Org. Chem. 2009, 74, 170–181. (e) Menendez
Perez, B.; Hartung, J. Tetrahedron Lett. 2009, 50, 960–962. (f) Jalce, G.;
Franck, X.; Figadere, B. Eur. J. Org. Chem. 2009, 378–386. (g) Ward,
A. F.; Wolfe, J. P. Org. Lett. 2009, 11, 2209–2212.
(10) (a) Mitchell, T. A.; Zhao, C.; Romo, D. Angew. Chem., Int. Ed.
2008, 47, 5026–5029. (b) Mead, K. T.; Pillai, S. K. Tetrahedron Lett. 1993,
34, 6997–7000.
(11) Review: (a) Masse, C. E.; Panek, J. S. Chem. ReV. 1995, 95, 1293–
1316. Selected examples: (b) Parsons, A. T.; Johnson, J. S. J. Am. Chem.
Soc. 2009, 131, 3122–3123. (c) Mertz, E.; Tinsley, J. M.; Roush, W. R. J.
Org. Chem. 2005, 70, 8035–8046. (d) Gansa¨uer, A.; Rinker, B.; Pierobon,
M.; Grimme, S.; Gerenkamp, M.; Mu¨ck-Lichtenfeld, C. Angew. Chem., Int.
Ed. 2003, 42, 3687–3690.
(18) (a) Jaouen, V.; Jegou, A.; Lemee, L.; Veyrieres, A. Tetrahedron
1999, 55, 9245–9260. (b) More substituted cases may be less selective:
Kovensky, J.; Sinay, P. Eur. J. Org. Chem. 2000, 3523–3525; correction
Eur. J. Org. Chem. 2000, 4125.
(12) Reviews: (a) Overman, L. E.; Pennington, L. D. J. Org. Chem.
2003, 68, 7143–7157. (b) Postema, M. H. D. Tetrahedron 1992, 48, 8545–
8599. For selected examples, see: (c) Jasti, R.; Rychnovsky, S. D. J. Am.
Chem. Soc. 2006, 128, 13640–13648. (d) Sawant, K. B.; Jennings, M. P. J.
Org. Chem. 2006, 71, 7911–7914. (e) Denmark, S. E.; Yang, S.-M. J. Am.
Chem. Soc. 2004, 126, 12432–12440.
(19) For relevant computational studies, see: Nokami, T.; Werz, D. B.;
Seeberger, P. H. HelV. Chim. Acta 2005, 88, 2823–2831.
(20) (a) Hall, H. K. Jr.; DeBlauwe, F. J. Am. Chem. Soc. 1975, 97, 655–
656. (b) Hall, H. K., Jr.; DeBlauwe, F.; Carr, L. J.; Rao, V. S.; Reddy,
G. S. J. Polym. Sci. Polym. Symp. 1976, 56, 101–115.
(13) Schmitt, A.; Reissig, H.-U. Eur. J. Org. Chem. 2000, 3893–3901.
(14) (a) Smith, D. M.; Woerpel, K. A. Org. Biomol. Chem. 2006, 7,
1195–1201. (b) Larsen, C. H.; Ridgway, B. H.; Shaw, J. T.; Smith, D. M.;
Woerpel, K. A. J. Am. Chem. Soc. 2005, 127, 10879–10884.
(15) See page 10881 of ref 14b.
(21) Enhanced reactivity of 1 suggests that the range of conditions
suitable for initiation of its reactions (i.e., combinations of Lewis acids and
nucleophiles) might be broader than for other types of acetals.
Org. Lett., Vol. 11, No. 17, 2009
3959