B. Zhang et al. / Bioorg. Med. Chem. Lett. 22 (2012) 7194–7197
7197
synthetic compounds. However, 7a was less effective than 3, which
References and notes
may be related to the absence of hydroxyl group in B ring.11,12
All the compounds 2–8 were evaluated for their in vivo anti-
hyperglycemic activity on blood glucose level in streptozotocin-in-
duced diabetic mice.23 Metformin was also chosen as the positive
control. The results are shown in Table 1.
1. Kumar, A.; Sharma, S.; Tripathi, V. D.; Maurya, R. A.; Srivastava, S. P.; Bhatia, G.;
Tamrakar, A. K.; Srivastava, A. K. Bioorg. Med. Chem. 2010, 18, 4138.
2. Ginsberg, H.; Plutzky, J.; Sobel, B. E. J. Cardiovasc. Risk 1999, 6, 337.
3. (a) Tassoni, E.; Giannessi, F.; Brunetti, T.; Pessotto, P.; Renzulli, M.; Travagli, M.;
Rajamäki, S.; Prati, S.; Dottori, S.; Corelli, F.; Cabri, W.; Carminati, P.; Botta, M. J.
Med. Chem. 2008, 51, 3073; (b) Singh, F. V.; Parihar, A.; Chaurasia, S.; Singh, A.
B.; Singh, S. P.; Tamrakar, A. K.; Srivastava, A. K.; Goel, A. Bioorg. Med. Chem. Lett.
2009, 19, 2158.
4. Yanagisawa, H.; Takamura, M.; Yamada, E.; Fujita, S.; Fujiwara, T.; Yachi, M.;
Isobe, A.; Hagisawa, Y. Bioorg. Med. Chem. Lett. 2000, 10, 373.
5. (a) Bock, K.; Pedersen, H. Carbohydr. Res. 1984, 132, 142; (b) Mahmud, T.;
Tornus, I.; Egelkrout, E.; Wolf, E.; Uy, C.; Floss, H. G.; Lee, S. J. Am. Chem. Soc.
1999, 121, 6973.
6. (a) Huttunen, K. M.; Mannila, A.; Kemppainen, E.; Leppanen, J.; Vepsalainen, J.;
Jarvinen, T.; Rautio, J. J. Med. Chem. 2009, 52, 4142; (b) Natali, A.; Ferrannini, E.
Diabetologia 2006, 49, 434.
7. Bhat, B. A.; Ponnala, S.; Sahu, D. P.; Tiwari, P.; Tripathi, B. K.; Srivastava, A. K.
Bioorg. Med. Chem. 2004, 12, 5857.
8. (a) Lehmann, J. M.; Moore, L. B.; Smith-Oliver, T. A.; Wilkison, W. O.; Willson, T.
M.; Kliewer, S. A. J. Biol. Chem. 1995, 270, 12953; (b) Willson, T. M.; Cobb, J. E.;
Cowan, D. J.; Wiethe, R. W.; Correa, I. D.; Prakash, S. R.; Beck, K. D.; Moore, L. B.;
Kliewer, S. A.; Lehmann, J. M. J. Med. Chem. 1996, 39, 665.
9. Goel, A.; Agarwal, N.; Singh, F. V.; Sharon, A.; Tiwari, P.; Dixit, M.; Pratap, R.;
Srivastava, A. K.; Maulik, P. R.; Ram, V. J. Bioorg. Med. Chem. Lett. 2004, 14, 1089.
10. Stuart, A. R.; Gulve, E. A.; Wang, M. Chem. Rev. 2004, 104, 1255.
11. Gao, H.; Nishioka, T.; Kawabata, J.; Kasai, T. Biosci. Biotechnol. Biochem. 2004, 68,
369.
The results indicated that compound 3 has apparent effects on
blood glucose levels in streptozotocin-induced diabetic mice just
as the metformin. After respectively, oral administration of com-
pound 3, metformin, and saline water at 100 mg kgꢀ1 dꢀ1 for
10 days, the compound 3 group (13.23 mM, P <0.05) and the met-
formin group (10.00 mM, P <0.01) showed significant difference
when compared to the model group (23.03 mM) on blood glucose
levels. Compound
activity.
3 exhibited promising anti-hyperglycemic
At this stage, the structure–activity relationship (SAR) could not
be established because of the limited number of compounds. In or-
der to further study the relationship between the structures and
the anti-hyperglycemic activity, more hesperidin derivatives
would need to be designed and synthesized.
In conclusion, the present studies showed that some novel hes-
peridin derivatives exhibited anti-hyperglycemic activities. Substi-
tution of benzyloxy group on compounds 3 and 7a might be the
main factor contributing to their pharmacological properties. Fur-
ther studies in developing them as lead compounds and exploring
their mechanisms of action are in progress.
12. Nomura, M.; Takahashi, T.; Nagata, N.; Tsutsumi, K.; Kobayashi, S.; Akiba, T.;
Yokogawa, K.; Moritani, S.; Miyamoto, K. Biol. Pharm. Bull. 2008, 37, 1403.
13. Rawat, P.; Kumar, M.; Rahuja, N.; Srivastava, D. S. L.; Srivastava, A. K.; Maurya,
R. Bioorg. Med. Chem. Lett. 2011, 21, 228.
14. Jung, U. J.; Lee, M. K.; Park, Y. B.; Kang, M. A.; Choi, M. S. Int. J. Biochem. Cell Biol.
2006, 38, 1134.
15. Jeong, T. S.; Kim, E. E.; Lee, C. H.; Oh, J. H.; Moon, S. S.; Lee, W. S.; Oh, G. T.; Lee,
S. K.; Bok, S. H. Bioorg. Med. Chem. Lett. 2003, 13, 2663.
Acknowledgments
16. Yeh, C. C.; Kao, S. J.; Lin, C. C.; Wang, S. D.; Liu, C. J.; Kao, S. T. Life Sci. 2007, 80,
1821.
17. Yamamoto, M.; Suzuki, A.; Jokura, H.; Yamamoto, N.; Hase, T. Nutrition 2008,
24, 470.
18. DuBois, G. E.; Crosby, G. A.; Stephenson, R. A.; Wingard, R. E. J. Agric. Food Chem.
1977, 25, 763.
19. (a) Chapdelaine, P.; Tremblay, R. R.; Dube, J. Y. Clin. Chem. 1978, 24, 208; (b)
Rao, R. R.; Tiwari, A. K.; Reddy, P. P.; Babu, K. S.; Ali, A. Z.; Madbusudana, K.;
Rao, J. M. Bioorg. Med. Chem. 2009, 17, 5170.
We would like to thank Professor Erkang Fan and Dr. Zhongshen
Zhang (University of Washington, USA) for helpful discussions and
technical assistance; we also thank the Fundamental Research
Funds for the Central Universities of China (XDJK2009C087),
Scientific Research Foundation for Ph. D of Southwest University
of China (SWU111072, 111064) and Medical & Scientific Research
projects of Chongqing Municipal Health Bureau of China
(2011-1-114), for financial support.
20. Andrew, S., Jr; Clayton, H. H. Introduction to Organic Chemistry; Macmillan
Publishing Company: New York, 1985. p 455.
21. Ma, D. Y.; Zheng, Q. Y.; Wang, D. X.; Wang, M. X. Org. Lett. 2006, 8, 3231.
22. He, K.; Li, X. G.; Chen, X.; Ye, X. L.; Yuan, L. J.; Jin, Y. N.; Li, P. P.; Deng, Y. F.; Jin,
Q.; Shi, Q.; Shu, H. J. J. Ethnopharmacol. 2011, 137, 1135.
Supplementary data
23. Kakinuma, H.; Oi, T.; Hashimoto-Tsuchiya, Y.; Arai, M.; Kawakita, Y.; Fukasawa,
Y.; Iida, I.; Hagima, N.; Takeuchi, H.; Chino, Y.; Asami, J.; Okumura-Kitajima, L.;
Io, F.; Yamamoto, D.; Miyata, N.; Takahashi, T.; Uchida, S.; Yamamoto, K. J. Med.
Chem. 2010, 53, 3247.
Supplementary data (General procedures and spectral data)
associated with this article can be found, in the online version, at