2394
References
1. This paper constitutes Part 194 of Nucleosides and Nucleotides. Part 193: Kanazaki, M.; Ueno, Y.; Shuto, S.; Matsuda, A.
J. Am. Chem. Soc. 2000, 122, in press.
2. Berridge, M. J. Nature (London) 1993, 361, 315–325.
3. Sutko, J. L.; Airey, J. A. Pharm. Rev. 1996, 76, 1027–1071.
4. Potter, B. V. L; Lampe, D. Angew. Chem., Int. Ed. Engl. 1995, 34, 1933–1972, and references sited therein.
5. (a) Takahashi, S.; Tanzawa, T.; Miyawaki, A.; Takahashi, M. J. Antibiot. 1993, 46, 1643–1647. (b) Takahashi, S.; Kinoshita,
T.; Takahashi, M. J. Antibiot. 1994, 47, 95–100. (c) Takahashi, M.; Tanzawa, K.; Takahashi, S. J. Biol. Chem. 1994, 269,
369–372.
6. Structure–activity relationship studies of adenophostin A by our group [(a) Tatani, K.; Shuto, S.; Ueno, Y.; Matsuda, A.
Tetrahedron Lett. 1998, 39, 5065–5068. (b) Shuto, S.; Tatani, K.; Ueno, Y. Matsuda, A. J. Org. Chem. 1998, 63, 8815–8824]
and others [(a) Marchant, J. S.; Beecroft, M. D.; Riley, A. M.; Jenkins, D. J.; Marwood, R. D.; Taylor, C. W.; Potter, B.
V. L. Biochemistry 1997, 36, 12780–12790. (b) Marwood. R. D.; Riley, A. M.; Vanessa, C.; Taylor, C. W.; Potter, B. V. L.
Bioorg. Med. Chem. Lett. 1999, 9, 453–459. (c) Wilcox, R. A.; Erneux, C.; Primrose, W. U.; Gigg, R.; Nahorski, S. R. Mol.
Pharmacol. 1995, 47, 1204–1211] suggest: (1) that the α-D-glucopyranose structure of adenophostin A can be a bioisostere
of the D-myo-inositol moiety in IP3; (2) that the three-dimensional locations of the three phosphate groups of adenophostins
may be the same as those of IP3; and (3) that the adenine moiety of adenophostin A significantly enhances its activity.
7. (a) Postema, M. H. D. Tetrahedron 1992, 48, 8545–8599. (b) Jaramillo, C.; Knapp, S. Synthesis 1994, 1–20. (c) Levy, D.
E.; Tang, C. The Chemistry of C-Glycosides; Oxford: Pergamon Press, 1995. (d) Postema, M. H. D. C-Glycoside Synthesis;
Boca Raton: CRC Press, 1995.
8. Synthetic studies of C-disaccharides using the temporary silicon-tethered radical coupling strategy: (a) Xin, Y. C.; Mallet,
J.–M. M.; Sinay, P. J. Chem. Soc., Chem. Commun. 1993, 864–865. (b) Myers, A. G.; Gin, D. Y.; Rogers, D. H. J. Am. Chem.
Soc. 1994, 116, 4697–4718. (c) Fairbanks, A. J.; Perrin, E.; Sinay, P. Synlett. 1996, 679–681. (d) Rekai, E.; Rubinstenn, G.;
Mallet, J.-M. M.; Sinay, P. Synlett. 1998, 831–834. (e) Rubinstenn, G.; Mallet, J.-M. M.; Sinay, P. Tetrahedron Lett. 1998,
39, 3697–3700.
9. It is known that anomeric radicals of glucose derivatives adopt a B2,5 boat-like conformation and their addition reactions
selectively give the corresponding α-substitution products due to the stereoelectronic effect: (a) Giese, B. Angew. Chem., Int.
Ed. Engl. 1989, 28, 969–980. (b) Rychnovsky, S. D.; Powers, J. P.; Lepage, T. J. J. Am. Chem. Soc. 1992, 114, 8375–8384.
10. Niedballa, U.; Vorbrüggen, H. J. Org. Chem. 1974, 25, 3654–3660.
11. Banoub, J.; Boullanger, P.; Potier, M.; Descotes, G. Tetrahedron Lett. 1986, 27, 4145–4148.
12. A similar ring-opening reaction of sugar orthoesters with PhSH has been reported: Skrydstrup, T.; Mazéas, D.; Elmouchir,
M.; Doisneau, G.; Riche, C.; Chiaroni, A.; Beau, J.-M. Chem. Eur. J. 1997, 3, 1342–1356.
13. Hattori, H.; Tanaka, M.; Fukushima, M.; Sasaki, T.; Matsuda, A. J. Med. Chem. 1996, 39, 5005–5011.
14. Stereochemistries of 7 and 11 were confirmed from the 1H NMR and GOESY spectral data measured in CDCl3 as below,
after converting them to the corresponding 5,20-di-O-benzoates 70 and 110.
15. Watanabe, Y.; Komoda, Y.; Ebisuya, K.; Ozaki, S. Tetrahedron Lett. 1990, 31, 255–256.
1
16. Physical data of 3: H NMR (500 MHz, D2O) δ: 8.29 (1H, s, H-2), 8.17 (1H, s, H-8), 6.35 (1H, s, H-10), 5.00 (1H, dd,
H-20, J=4.9, 7.6 Hz), 4.21 (3H, m, H-40, H-400, H-100), 4.07 (1H, dd, H-600, J=6.8, 12.9 Hz), 3.92 (1H, ddd, H-300, J=5.7,
5.7, 10 Hz), 3.82 (1H, dd, H-50 , J=13.0, 1.4 Hz), 3.79 (2H, m, H-200, H-500), 3.65 (1H, dd, H-50 , J=3.7, 13.0 Hz), 3.57
a
b
(1H, dd, H-600, J=3.2, 12.9 Hz), 2.71 (1H, m, H-30), 2.02 (1H, m, C-glycosidic CHaHb), 1.80 (1H, m, C-glycosidic CHaHb);
31P NMR (67.5 MHz, D2O, H-decoupled) δ: 4.68, 4.20, 4.14; FAB-HRMS (triethylammonium salt, negative) calcd for
C17H27O17N5P3: 666.0615; found: 660.0615 (M−).