10.1002/anie.201801976
Angewandte Chemie International Edition
COMMUNICATION
peduncularine, and lyconadin alkaloids.[19] Also, thienyl 1-
pyrroline 29 was elaborated to the proline derivative 39 (1:1 dr),
a core structure present in the hepatitis C virus inhibitor 40.[20]
[5]
[6]
a) T. E. Muller, M. Beller, Chem. Rev. 1998, 98, 675; b) F. Pohlki, S.
Doye, Chem. Soc. Rev. 2003, 32, 104; c) T.E. Muller, K. C. Hultzsch, M.
Yus, F. Foubelo, M. Tada, Chem. Rev. 2008, 108, 3795.
a) S. Z. Zard, Chem. Soc. Rev. 2008, 37, 1603; b) J. Davies, S. G.
Booth, S. Essafi, R. A. W. Dryfe, D. Leonori, Angew. Chem. Int. Ed.
2015, 54, 14017; Angew. Chem. 2015, 127, 14223; c) H. Jiang, A.
Studer, Angew. Chem. Int. Ed. 2017, 56, 12273; Angew. Chem. 2017,
129, 12441; d) J. Davies, N. S. Sheikh, D. Leonori, Angew. Chem. Int.
Ed. 2017, 56, 13361; Angew. Chem. 2017, 129, 13546.
In summary, we reported
a
new rhodium-catalyzed
olefination reaction of diacceptor diazo compounds and vinyl
azides for the synthetically challenging electrophilic terminal
olefins. The olefination proceeds via C-C bond fragmentation of
the acyclic zwitterion and involve benign nitrile and nitrogen as
the by-products. The synthetic importance of the olefination was
[7]
[8]
D.-S. Wang, Z.-S. Ye, Q.-A. Chen, Y.-G. Zhou, C.-B. Yu, H.-J. Fan, Y.
Duan, J. Am. Chem. Soc. 2011, 133, 8866.
demonstrated in
a new [1+1+3] annulation reaction of
a) C. Lipinski, A. Hopkins, Nature 2004, 432, 855; b) M. A. Koch, A.
Schuffenhauer, M. Scheck, S. Wetzel, M. Casaulta, A. Odermatt, P. Ertl,
H. Waldmann, Proc. Natl. Acad. Sci. USA 2005, 102, 17272; c) M. D.
Burke, E. M. Berger, S. L. Schreiber, Science 2003, 302, 613; d) W. R.
J. D. Galloway, A. Isidro-Llobet, D. R. Spring, Nat. Commun. 2010, 1:80
DOI: 10.1038/ncomms1081.
diazoenals and vinyl azides via novel enal-acrylates, leading to
the valuable enal-functionalized 1-pyrrolines and deuterated 1-
pyrrolines. Structural diversification of enal-functionalized 1-
pyrrolines gave biologically important pyrrolidines. Further
studies on the synthetic applications of olefination and
annulation are underway.
[9]
B. E. Maryanoff, A. B. Reitz, Chem. Rev. 1989, 89, 863;
[10] a) T. Takeda (Editor), Modern Carbonyl Olefination, Wiley-VCH: Verlag
GmbH, 2004; b) Y. Hu, X. P. Zhang, Top. Curr. Chem. 2012, 327, 147.
[11] For the internal olefin synthesis involving diazo compounds, see: a) J.
H. Hansen, B. T. Parr, P. Pelphrey, Q. Jin, J. Autschbach, H. M. L.
Davies, Angew. Chem. Int. Ed. 2011, 50, 2544; Angew. Chem. 2011,
123, 2592; and references cited therein; b) D. Zhang, G. Xu, D. Ding, C.
Zhu, J. Li, J. Sun, Angew. Chem. Int. Ed. 2014, 53, 11070; Angew.
Chem. 2014, 126, 11250; c) M. Hu, C. Ni, L. Li, Y. Han, J. Hu, J. Am.
Chem. Soc. 2015, 137, 14496; d) Z. Zhang, W. Yu, C. Wu, C. Wang, Y.
Zhang, J. Wang, Angew. Chem. Int. Ed. 2016, 55, 273; Angew. Chem.
2016, 128, 281; e) F.-M. Liao, Z.-Y. Cao, J.-S. Yu, J. Zhou, Angew.
Chem. Int. Ed. 2017, 56, 2459; Angew. Chem. 2017, 129, 2499.
[12] Selected references for synthetic applications of vinyl azides: a) N.
Jung, S. Bräse, Angew. Chem. Int. Ed. 2012, 51, 12169; Angew. Chem.
2012, 124, 12335; b) S. Chiba, Synlett 2012, 23, 21; c) B. Hu, S. G.
DiMagno, Org. Biomol. Chem. 2015, 13, 3844; d) H. Hayashi, A. Kaga,
S. Chiba, J. Org. Chem. 2017, 82, 11981; e) J. Fu, G. Zanoni, E. A.
Anderson, X. Bi, Chem. Soc. Rev. 2017, 46, 7208; f) H. Choi, H. J.
Shirley, P. A. Hume, M. A. Brimble, D. P. Furkert, Angew. Chem. Int.
Ed. 2017, 56, 7420; Angew. Chem. 2017, 129, 7528.
Acknowledgements
We thank IISER Bhopal, Department of Science & Technology
(SERB SR/S1/OC-13/2012), and Ministry of Earth Sciences
(MoES/09-DS/02/2014 PC-IV) for generous funding. We also
thank CSIR for a graduate research fellowship to VK.
Keywords: olefination • diazoenal • carbenoid • [1+1+3]
annulation • pyrroline
[1]
a) D. Ponglux, S. Wongseripipatana, S. Subhadhirasakul, H. Takayama,
M. Yokota, K. Ogata, C. Phisalaphong, N. Aimi, S.-i. Sakai,
Tetrahedron 1988, 44, 5075; b) D. Ponglux, S. Wongseripipatana, H.
Takayam, K. Ogata, N. Aimi, S.-i. Sakai, Tetrahedron Lett. 1988, 29,
5395; c) T. H. Jones, P. J. DeVries, P. J. Escoubas, J. Chem. Ecol.
1991, 17, 2507; d) D. Tsukamoto, M. Shibano, R. Okamoto, G. Kusano,
Chem. Pharm. Bull. 2001, 49, 492; e) M. Kitajima, N. Kogure, K.
Yamaguchi, H. Takayama, N. Aimi, Org. Lett. 2003, 5, 2075; f) Y.-K. Xu,
S.-P. Yang, S.-G. Liao, H. Zhang, L.-P. Lin, J. Ding, J.-M. Yue, J. Nat.
Prod. 2006, 69, 1347; g) E.T. Newcomb, P. C. Knutson, B. A. Pedersen,
E. M. Ferreira, J. Am. Chem. Soc. 2016, 138, 108; h) T. Harada, J.
Shimokawa, T. Fukuyama, Org. Lett. 2016, 18, 4622.
[13] P. Gu, Y. Su, X.-P. Wu, J. Sun, W. Liu, P. Xue, R. Li, Org. Lett. 2012,
14, 2246.
[14] a) E. López, L. A. López, Angew. Chem. Int. Ed. 2017, 56, 5121;
Angew. Chem. 2017, 129, 5203.
[15] a) S. G. Dawande, V. Kanchupalli, J. Kalepu, H. Chennamsetti, B. S.
Lad, S. Katukojvala, Angew. Chem. Int. Ed. 2014, 53, 4076; Angew.
Chem. 2014, 126, 4160; b) S. G. Dawande, V. Kanchupalli, B. S. Lad, J.
Rai, S. Katukojvala, Org. Lett. 2014, 16, 3700; c) V. Kanchupalli, D.
Joseph, S. Katukojvala, Org. Lett. 2015, 17, 5878; d) J. Kalepu, S.
Katukojvala, Angew. Chem. Int. Ed. 2016, 55, 7831; Angew. Chem.
2016, 128, 7962.
[2]
[3]
a) F.-P. Montforts, B. Gerlach, F. Hoper, Chem. Rev. 1994, 94, 327; b)
S. M. Weinreb, Acc. Chem. Res. 2003, 36, 59; c) F. Bellina, R. Rossi,
Tetrahedron 2006, 62, 7213; d) C. D. Graaff, E. Ruijter, R. V. A. Orru,
Chem. Soc. Rev. 2012, 41, 3969; e) S. Zhang, W. -X. Zhang, Z. Xi, Acc.
Chem. Res. 2015, 48, 1823; f) M. Taniguchi, J. S. Lindsey, Chem. Rev.
2017, 117, 344; g) C. Guo, D.-W. Sun, S. Yang, S.-J. Mao, X.-H. Xu,
S.-F. Zhu, Q.-L. Zhou, J. Am. Chem. Soc. 2015, 137, 90.
[16] CCDC 1434326 (33A) and 1434615 (33B) contain the supplementary
crystallographic data for this paper. This data can be obtained free of
charge from The Cambridge Crystallographic Data Centre.
Selected examples: a) M. Strohmeier, K. Leach, M. A. Zajac, Angew.
Chem. Int. Ed. 2011, 50, 12335; Angew. Chem. 2011, 123, 12543; b) G.
Sathishkannan, K. Srinivasan, Org. Lett. 2011, 13, 6002; c) A. D.
Melhado, G. W. Amarante, Z. J. Wang, M. Luparia, F. D. Toste, J. Am.
Chem. Soc. 2011, 133, 3517; d) K. K. Toh, A. Biswas, Y.-F. Wang, Y. Y.
Tan and S. Chiba, J. Am. Chem. Soc. 2014, 136, 6011; e) J. J. Badillo,
C. J. A. Ribeiro, M. M. Olmstead, A. K. Franz, Org. Lett. 2014, 16,
6270; f) X. Zhu, S. Chiba, Chem. Commun. 2016, 52, 2473; g) X.-F. Bai,
L., Li; Z. Xu, Z.-J. Zheng, C.-G. Xia, Y.-M. Cui, L.-W. Xu, Chem. Eur. J.
2016, 22, 10399.
[17] a) W. Feely, V. Boekelheide, Org. Synth. 1958, 38, 22; b) A. Bugarin, K.
D. Jones, B. T. Connell, Chem. Commun. 2010, 46, 1715.
[18] N. Ningsanont, D. C. Black, R. Chanphen, Y. Thebtaranonth, J. Med.
Chem. 2003, 46, 2397.
[19] a) A. B. Holmes, A. Kee, T. Ladduwahetty, D. F. Smith, J. Chem. Soc.
Chem. Commun. 1990, 1412; b) W. J. Klaver, H. Hiemstra, W. N.
Speckamp, J. Am. Chem. Soc. 2002, 124, 11342; c) Y. Yang, M. Dai,
Synlett. 2014, 25, 2093.
[20] M. J. Slater, et al. J. Med. Chem. 2007, 50, 897.
[21] An alternative mechanism involving
a transient donor-acceptor
[4]
a) N. J. Race, I. R. Hazelden, A. Faulkner, J. F. Bower, Chem. Sci.
2017, 8, 5248; b) X. Bao, Q. Wang, J. Zhu, Angew. Chem. Int. Ed. 2017,
56, 9577; Angew. Chem. 2017, 129, 9705.
cyclopropane may not be ruled out. However, no cyclopropane
intermediate was detected in the NMR studies (see SI for details).
This article is protected by copyright. All rights reserved.