C O M M U N I C A T I O N S
Scheme 1. Proposed Mechanism for the Formation of
Cyclobutane 4
Acknowledgment. This research was supported by the Uni-
versity of Nevada, Reno. I thank Professor Vincent J. Catalano for
solving the X-ray structure, and Professor Sergey A. Kozmin for
helpful discussions. The X-ray diffractometer purchase was sup-
ported by NSF Grant CHE-0226402.
Supporting Information Available: Experimental procedures,
compound characterization data, and X-ray file. This material is
References
(1) For recent reviews, see: (a) Dyker, G. Angew Chem., Int. Ed. 2000, 39,
4237-4239. (b) Hashmi, A. S. K. Gold Bull. 2003, 36, 3-9. (c)
Echavarren, A. M.; Nevado, C. Chem. Soc. ReV. 2004, 33, 431-436. (d)
Bruneau, C. Angew. Chem., Int. Ed. 2005, 44, 2328-2334.
(2) (a) Fukuda, Y.; Utimoto, K. J. Org. Chem. 1991, 56, 3729-3731. (b)
Teles, J. H.; Brode, S.; Chabanas, M. Angew. Chem., Int. Ed. 1998, 37,
1415-1418. (c) Casado, R.; Contel, M.; Laguna, M.; Romero, P.; Sanz,
S. J. Am. Chem. Soc. 2003, 125, 11925-11935. (d) Mizushima, E.; Sato,
K.; Hayashi, T.; Tanaka, M. Angew. Chem., Int. Ed. 2002, 41, 4563-
4565. (e) Antoniotti, S.; Genin, E.; Michelet, V.; Geˆnet, J.-P. J. Am. Chem.
Soc. 2005, 127, 9976-9977.
(3) For selected recent developments, see: (a) Hashmi, A. S. K.; Frost, T.
M.; Bats, J. W. J. Am. Chem. Soc. 2000, 122, 11553-11554. (b) Nieto-
Oberhuber, C.; Munoz, M. P.; Bunuel, E.; Nevado, C.; Cardenas, D. J.;
Echavarren, A. M. Angew. Chem., Int. Ed. 2004, 43, 2402-2406. (c)
Kennedy-Smith, J. J.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc. 2004,
126, 4526-4527. (d) Mamane, V.; Gress, T.; Krause, H.; Fu¨rstner, A. J.
Am. Chem. Soc. 2004, 126, 8654-8655. (e) Staben, S. T.; Kennedy-Smith,
J. J.; Tosie, F. D. Angew. Chem., Int. Ed. 2004, 43, 5350-5352. (f)
Luzung, M. R.; Markham, J. P.; Toste, F. D. J. Am. Chem. Soc. 2004,
126, 10858-10859. (g) Zhang, L.; Kozmin, S. A. J. Am. Chem. Soc. 2004,
126, 11806-11807. (h) Sherry, B. D.; Toste, F. D. J. Am. Chem. Soc.
2004, 126, 15978-15979. (i) Nieto-Oberhuber, C.; Lopez, S.; Echavarren,
A. M. J. Am. Chem. Soc. 2005, 127, 6178-6179. (j) Zhang, L.; Kozmin,
S. A. J. Am. Chem. Soc. 2005, 127, 6962-6963. (k) Gagosz, F. Org.
Lett. 2005, 7, 4129-4132.
The proposed mechanism for the formation of cyclobutane 4 is
shown in Scheme 1. Activation of the C-C triple bond in
propargylic ester 3 by [Au(PPh3)]+ promotes a 3,3-rearrangement
of the indole-3-acetoxy group, which leads to the formation of
allenylic ester 6. The allene moiety of 6 is further activated by the
cationic Au(I) complex, resulting in the formation of either oxonium
A with Au trans to the R1 group or B with the opposite double
bond geometry.10 While A suffers A1,3-strain, B is relatively less
strained due to the long C(sp2)-Au bond.11 Consequently, equili-
bration of A and B via allenylic ester 6 would result in thermo-
dynamically favored B as the predominant oxonium species.
Cyclobutane 4 with an exocyclic E-double bond is formed via
cyclization of the oxonium group in B to the 3-position of the indole
ring, followed by intramolecular trapping of the iminium with the
alkenylgold(I).12
(4) (a) Fukuda, Y.; Utimoto, K. Synthesis 1991, 975-978. (b) Arcadi, A.; Di
Giuseppe, S.; Marinelli, F.; Rossi, E. AdV. Synth. Catal. 2001, 343, 443-
446. (c) Gorin, D. J.; Davis, N. R.; Toste, F. D. J. Am. Chem. Soc. 2005,
127, 11260-11261.
(5) (a) Hashmi, A. S. K.; Schwarz, L.; Choi, J.-H.; Frost, T. M. Angew. Chem.,
Int. Ed. 2000, 39, 2285-2288. (b) Asao, N.; Takahashi, K.; Lee, S.;
Kasahara, T.; Yamamoto, Y. J. Am. Chem. Soc. 2002, 124, 12650-12651.
(c) Asao, N.; Aikawa, H.; Yamamoto, Y. J. Am. Chem. Soc. 2004, 126,
7458-7459. (d) Yao, T.; Zhang, X.; Larock, R. C. J. Am. Chem. Soc.
2004, 126, 11164-11165.
1
This mechanism is supported by the H NMR observation of
(6) (a) See ref 5a. (b) Sromek, A. W.; Rubina, M.; Gevorgyan, V. J. Am.
Chem. Soc. 2005, 127, 10500-10501.
allenylic ester 6f. When propargylic ester 3f with R2 ) cyclohexyl
was treated with 1 mol % of AuCl(PPh3)/AgSbF6, a 1:1 inseparable
mixture of 6f and cyclobutane 4f was isolated in 2 h. 6f was
independently prepared through AuCl3-catalyzed 3,3-rearrangement
of 3f (eq 2). Not surprisingly, treatment of 6f with the cationic
Au(I) catalyst (5 mol %) for 8 h gave 4f in 74% yield. Remarkably,
AuCl3 did not catalyze the formation of 4f, and extended reaction
led to the decomposition of 6f. Other allenylic ester intermediates
were not observed, likely because the [2 + 2] cyclizations of these
allenylic esters were faster than the 3,3-rearrangements of the
corresponding propargylic esters. In contrast, 6f reacted with Au(I)
slower than 3f due to the steric bulk of the cyclohexyl group,
resulting in the accumulation of 6f and the slow formation of 4f. It
is noteworthy that Au salts have been shown previously to catalyze
2,3-rearrangements of propargylic esters3d,13 but not their 3,3-
rearrangements.14
(7) For recent reviews on transition-metal-catalyzed reactions of allenes,
see: (a) Ma, S. Chem. ReV. 2005, 105, 2829-2871. (b) Hashmi, A. S. K.
In Modern Allene Chemistry; Krause, N., Ed.; Wiley: New York, 2004;
Vol. 2, pp 877-923. (b) Mandai, T. In Modern Allene Chemistry; Krause,
N., Ed.; Wiley: New York, 2004; Vol. 2, pp 925-972.
(8) For recent developments on Au complexes, see the following. Au(III):
Hashmi, A. S. K.; Weyrauch, J. P.; Rudolph, M.; Kurpejovic, E. Angew.
Chem., Int. Ed. 2004, 43, 6545-6547. Au(I): Mezailles, N.; Ricard, L.;
Gagosz, F. Org. Lett. 2005, 7, 4133-4136.
(9) Transition metal-catalyzed isomerizations of related 1-ethynyl-2-propenyl
carboxylates to cyclopentenones have been previously reported. For the
Pd-catalyzed case, see: Rautenstrauch, V. J. Org. Chem. 1984, 49, 950-
952. For the Au-catalyzed case, see: Shi, X.; Gorin, D. J.; Toste, F. D.
J. Am. Chem. Soc. 2005, 127, 5802-5803.
(10) The formation of oxonium species A and B is supported by the following
observation. This result and further studies will be published soon.
(11) ConQuest searching of the Cambridge structural database resulted eight
hits with similar C(sp2)-Au(I)(PPh3) bonds. The average bond length is
2.043 Å, while the bond length of C(sp2)-C(sp3) is 1.50 Å.
(12) An alternative kinetic explanation for the exclusive formation of the
E-double bond is that oxoniums B and A are in equilibrium with extremely
fast interconversion rate, and B cyclizes much faster than A.
(13) (a) Miki, K.; Ohe, K.; Uemura, S. J. Org. Chem. 2003, 68, 8505-8513.
(b) See ref 3b. (c) For the Pt-catalyzed case, see: Prasad, B. A. B.;
Yoshimoto, F. K.; Sarpong, R. J. Am. Chem. Soc. 2005, 127, 12468-
12469.
(14) For other metal-catalyzed 3,3-rearrangement of propargylic esters, see:
(a) Bowden, B.; Cookson, R. C.; Davis, H. A. J. Chem. Soc., Perkin Trans.
1 1973, 2634-2637. (b) Sromek, A. W.; Kelin, A. V.; Gevorgyan, V.
Angew. Chem., Int. Ed. 2004, 43, 2280-2282. (c) Cadran, N.; Cariou,
K.; Herve, G.; Aubert, C.; Fensterbank, L.; Malacria, M.; Marco-Contelles,
J. J. Am. Chem. Soc. 2004, 126, 3408-3409. (d) Cariou, K.; Mainetti,
E.; Fensterbank, L.; Malacria, M. Tetrahedron 2004, 60, 9745-9755.
In summary, we have demonstrated that the cationic Au(I)
complex derived from AuCl(PPh3)/AgSbF6 activates both pro-
pargylic esters and allenylic esters. Tandem Au(I)-catalyzed 3,3-
rearrangement-[2 + 2] cyclizations of readily available propargylic
indole-3-acetates lead to the formation of highly functionalized 2,3-
indoline-fused cyclobutanes with high efficiency. Further studies
in utilizing this tandem process as well as the application of these
cyclobutanes in alkaloid synthesis will be reported in due course.
JA056419C
9
J. AM. CHEM. SOC. VOL. 127, NO. 48, 2005 16805