C O M M U N I C A T I O N S
Table 2. Substrate Scope
nitrogen atom by using Et3B/air. The present C-H transformation
features the direct generation of R-aminoalkyl radicals from the
C-H substrates, which may potentially serve as an alternative to
the homolysis of C-X (X ) SR, SeR) bonds, the radical
translocation, and the single electron transfer (SET) processes. It
should be noted that this radical reaction enables the rapid
construction of contiguous stereocenters functionalized with het-
eroatoms, which is not readily achieved by other C-H function-
alization methods. Studies on the scope of this reaction are
underway with focus on the application to evolutional organic
synthesis.
Acknowledgment. This work is dedicated to the memory of
Professor Satoru Masamune. We thank Mr. Atsushi Kishida and
Dr. Kazuhiko Takatori for X-ray crystallographic analysis.
Supporting Information Available: Experimental procedures,
1
characterization data, and H/13C NMR spectra of hydroxyalkylation
products. This material is available free of charge via the Internet at
References
(1) Reviews: (a) Lee, H.-S.; Kang, S. H. Synlett 2004, 1673-1685. (b)
Bergmeier, S. C. Tetrahedron 2000, 56, 2561-2576. (c) Ager, D. J.;
Prakash, I.; Schaad, D. R. Chem. ReV. 1996, 96, 835-875.
(2) (a) Yoshimitsu, T.; Tsunoda, M.; Nagaoka, H. Chem. Commun. 1999,
1745-1746. (b) Yoshimitsu, T.; Arano, Y.; Nagaoka, H. J. Org. Chem.
2003, 68, 625-627. (c) Yoshimitsu, T.; Makino, T.; Nagaoka, H. J. Org.
Chem. 2003, 68, 7548-7550. (d) Yoshimitsu, T.; Arano, Y.; Nagaoka,
H. J. Org. Chem. 2005, 70, 2342-2345.
(3) Radical R-hydroxyalkylation of nitrogen compounds via SET processes:
(a) Cohen, S. G.; Parola, A.; Parsons, G. H. Chem. ReV. 1973, 73, 141-
161. (b) Kim, S. S.; Mah, Y. J.; Kim, A. R. Tetrahedron Lett. 2001, 42,
8315-8317. (c) Brule, C.; Hoffmann, N. Tetrahedron Lett. 2002, 43, 69-
72. Via radical translocation: (d) Murakami, M.; Hayashi, M.; Ito, Y. J.
Org. Chem. 1992, 57, 794-796. (e) Booth, S. E.; Benneche, T.; Undheim,
K. Tetrahedron 1995, 51, 3665-3674.
(4) Reviews of R-deprotonative alkylation of amines: (a) Beak, P.; Basu,
A.; Gallagher, D. J.; Park, Y. S.; Thayumanavan, S. Acc. Chem. Res. 1996,
29, 552-560. (b) Meyers, A. I. Tetrahedron, 1992, 48, 2589-2612. (c)
Kessar, S. V.; Singh, P. Chem. ReV. 1997, 97, 721-737. (d) Hoppe, D.;
Hense, T. Angew. Chem., Int. Ed. Engl. 1997, 36, 2282-2316. (e)
Katritzky, A. R.; Qi, M. Tetrahedron 1998, 54, 2647-2668. Also see:
(f) Gawley, R. E. Curr. Org. Chem. 1997, 1, 71-94.
(5) (a) Dombrowski, G. W.; Dinnocenzo, J. P.; Farid, S.; Goodman, J. L.;
Gould, I. R. J. Org. Chem. 1999, 64, 427-431. (b) Wayner, D. D. M.;
Clark K. B.; Rauk, A.; Yu, D.; Armstrong, D. A. J. Am. Chem. Soc. 1997,
119, 8925-8393. (c) Lalevee, J.; Allonas, X.; Fouassier, J.-P. J. Am. Chem.
Soc. 2002, 124, 9613-9621. (d) Luo, Y.-R. Handbook of Bond Dissocia-
tion Energies in Organic Compounds; CRC Press: Boca Raton, FL, 2003.
(6) Reviews: (a) Ollivier, C.; Renaud, P. Chem ReV. 2001, 101, 3415-3434.
(b) Yorimitsu, H.; Oshima, K. In Radicals in Organic Synthesis; Renaud,
P., Sibi, M. P., Eds.; Wiley-VCH: Weinheim, Germany, 2001; Vol. 1,
pp 11-27. (c) O’Mahony, G. Synlett 2004, 572-573. (d) Yoshimitsu, T.
In Electronic Encyclopedia of Reagents for Organic Synthesis; Paquette,
L. A., Fuchs, P. L., Wipf, P., Crich, D., Eds.; Wiley: New York, in press.
a C-H substrate (35 equiv) and Et3B (6 equiv) were used except entry
8. b Isolated yield based on aldehyde. c Stereochemistry of major product
has yet to be determined. d 70 equiv of 15 was used.
Scheme 2. Plausible Mechanism of Radical C-H
Hydroxyalkylation of Nitrogen Compounds
(7) Reviews of R-aminoalkyl radical chemistry: (a) Aurrecoechea, J. M.;
Suero, R. ARKIVOC 2004, 10-35. (b) Hart, D. In Radicals in Organic
Synthesis; Renaud, P., Sibi, M. P., Eds.; Wiley-VCH: Weinheim,
Germany, 2001; Vol. 2, pp 279-302. (c) Renaud, P.; Giraud, L. Synthesis
1996, 913-926.
(8) Recent instances of metal-mediated R-amino sp3 C-H functionalization:
(a) Sesen, B.; Sames, D. J. Am. Chem. Soc. 2005, 127, 5284-5285. (b)
Li, Z.; Li, C.-J. J. Am. Chem. Soc. 2005, 127, 3672-3673. (c) Murahashi,
S.-i.; Komiya, N.; Terai, H.; Nakae, T. J. Am. Chem. Soc. 2003, 125,
15312-15313. (d) Davies, H. M. L.; Venkataramani, C. Angew. Chem.,
Int. Ed. 2002, 41, 2197-2199. (e) Chatani, N.; Asaumi, T.; Yorimitsu,
S.; Ikeda, T.; Kakiuchi, F.; Murai, S. J. Am. Chem. Soc. 2001, 123, 10935-
10941.
(9) The hydroxyalkylation of 1-methylpiperidine provided alkylation products
in ca. 60% yield (dr 58:42; regioisomeric ratio ca. 5.5:1). Further studies
on the substrate scope will be reported in due course.
(10) The coordination of Et3B with aldehyde in path b remains a matter of
speculation. However, the formation of 4-methoxybenzyl alcohol from
4-methoxybenzaldehyde in some cases under the Et3B/air conditions
possibly indicates the intermediacy of the “ate” complex of Et3B with
aldehyde that is capable of â-hydride transfer. Studies aimed at elucidating
the details are ongoing.
2. An ethyl radical generated from Et3B/air abstracts the R-hydrogen
of the nitrogen compound to produce nucleophilic R-aminoalkyl
radicals. Then, the R-aminoalkyl radicals irreversibly undergo
addition to aldehyde via two possible pathways that involve the
rapid capture of oxyradicals with Et3B (path a) and/or the
precoordination of aldehyde with Et3B followed by the addition of
R-aminoalkyl radicals (path b).10
In conclusion, we have devised a new radical alkylation reaction
that occurs via the selective abstraction of the hydrogen R to the
JA053855Q
9
J. AM. CHEM. SOC. VOL. 127, NO. 33, 2005 11611