ACS Chemical Neuroscience
Page 4 of 6
genic animals to develop neurodegenerative phenotypes. Or
Conflicts of interest
1
2
3
4
5
6
7
8
make them vulnerable to other insults to cell homeostasis
caused by the mutations. The PARP upꢀregulation also deꢀ
pends on the brain pathophysiology.27 Evidently, alterations in
PARP activity were indicated in human postmortem sections
of Alzheimer’s brains.9,10
None to be declared.
Notes
There is no competing financial interest
REFERENCES
(1) Rouleau, M., Patel, A., Hendzel, M. J., Kaufmann, S. H., and
Poirier, G. G. (2010) PARP inhibition: PARP1 and beyond. Nat. Rev.
Cancer 10, 293–301.
Table 2 Saturation isotherm data
Type Region
Wild Cerebellar cortex 8.1±0.3
Dentate gyrus 7.2±0.5
Cerebellar cortex 7.4±0.4
Dentate gyrus 6.1±0.3
Bmax (pmol/mg) Kd (nM)
9
(2) D’Arcangelo, M., Drew, Y., and Plummer, R. (2016) The role
of PARP in DNA repair and its therapeutic exploitation. DNA Repair
Cancer Ther. Mol. Targets Clin. Appl. Second Ed. 105, 115–134.
(3) Chalmers, A. J. (2009) The potential role and application of
PARP inhibitors in cancer treatment. Br. Med. Bull. 89, 23–40.
(4) Kauppinen, T. M., Suh, S. W., Berman, A. E., Hamby, A. M.,
and Swanson, R. A. (2009) Inhibition of poly(ADPꢀribose)
polymerase suppresses inflammation and promotes recovery after
ischemic injury. J. Cereb. Blood Flow Metab. 29, 820–829.
(5) Merlo, D., CuchilloꢀIbañez, I., Parlato, R., and Rammes, G.
(2016) DNA Damage, Neurodegeneration, and Synaptic Plasticity.
Neural Plast. 2016, 1–2.
(6) Hong, S. J., Dawson, T. M., and Dawson, V. L. (2004) Nuclear
and mitochondrial conversations in cell death: PARPꢀ1 and AIF
signaling. Trends Pharmacol. Sci. 25, 259–264.
(7) CohenꢀArmon, M., Visochek, L., Katzoff, A., Levitan, D.,
Susswein, A. J., Klein, R., Valbrun, M., and Schwartz, J. H. (2004)
Longꢀterm memory requires polyADPꢀribosylation. Science (80-. ).
304, 1820–1822.
(8) Goldberg, S., Visochek, L., Giladi, E., Gozes, I., and Cohenꢀ
Armon, M. (2009) PolyADPꢀribosylation is required for longꢀterm
memory formation in mammals. J. Neurochem. 111, 72–79.
(9) Caiafa, P., Guastafierro, T., and Zampieri, M. (2009)
Epigenetics: poly(ADPꢀribosyl)ation of PARPꢀ1 regulates genomic
methylation patterns. FASEB J. 23, 672–678.
(10) Love, S., Barber, R., Wilcock, G. K., and Love, C. S. (1999)
Increased poly (ADPꢀribosyl) ation of nuclear proteins in Alzheimer
’s disease. Brain 247–253.
(11) Zeng, J., Libien, J., Shaik, F., Wolk, J., and Hernández, A. I.
(2016) Nucleolar PARPꢀ1 expression is decreased in Alzheimer’s
disease: Consequences for epigenetic regulation of rDNA and
cognition. Neural Plast. 2016.
(12) Kaundal, R. K., Shah, K. K., and Sharma, S. S. (2006)
Neuroprotective effects of NU1025, a PARP inhibitor in cerebral
ischemia are mediated through reduction in NAD depletion and DNA
fragmentation. Life Sci. 79, 2293–2302.
(13) Greco, R., Tassorelli, C., Stefania Mangione, A., Levandis, G.,
Certo, M., Nappi, G., Bagetta, G., Blandini, F., and Amantea, D.
(2015) Neuroprotection by the PARP inhibitor PJ34 modulates
cerebral and circulating RAGE levels in rats exposed to focal brain
ischemia. Eur. J. Pharmacol. 744, 91–97.
(14) Curtin, NJ, Sharma, R. (2015) PARP inhibitors for cancer
therapy. Cancer Drug Discovery and Development, 591
(15) Lucjan Strekowski, K. V. A., and Yuri, G. Synthesis of
analogs of the ergot alkaloids. J. Heterocyclic Chem, 37, 1495.
(16) Gillmore, A. T., Badland, M., Crook, C. L., Castro, N. M.,
Critcher, D. J., Fussell, S. J., Jones, K. J., Jones, M. C., Kougoulos,
E., Mathew, J. S., McMillan, L., Pearce, J. E., Rawlinson, F. L.,
Sherlock, A. E., and Walton, R. (2012) Multkilogram scaleꢀup of a
reductive alkylation route to a novel PARP inhibitor. Org. Process
Res. Dev. 16, 1897–1904.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
1.11±0.07
1.06±0.16
1.15±0.12
0.99±0.09
Tg
CONCLUSION
So far our understanding of the role of PARP in brain was
generated from histochemical studies on PARP activation or
RNAꢀexpression in rodent brains.23ꢀ25,27ꢀ28 The results deꢀ
scribed here with [3H]1 allow for direct assessment of PARPꢀ
protein binding by quantitative autoradiography to measure
[3H]1 binding to PARP protein throughout the brain. The
autoradiography provides quantitative measure of protein
density, which adds a new dimension to PARP related reꢀ
search. As a proofꢀofꢀprinciple we chose to measure PARP
saturation binding in brain regions associated with functional
PARPꢀ1 in wildtype and transgenic mice. The current observaꢀ
tions and the previous, related evidences may suggest PARP
association with neuronal damage,28,29 particularly in the hipꢀ
pocampal dentate gyrus. Dentate gyrus along with Olfactory
bulb and cerebellum are known to be the regions for neuroꢀ
genesis in adult brains.30ꢀ32 Proper pharmacological investigaꢀ
tions of functional PARP protein in brain may provide not
only a way to the neuroprotection but also a comprehensive
understanding to the relation between DNA damage/repair and
neurogenesis.
ASSOCIATED CONTENT
Supporting information
Experimental procedures and analytical data and supplemental
graphs. This material is available free of charge via the Internet at
AUTHOR INFORMATION
Author contributions
S.R.A: Chemistry, autoradiography, data evaluation, manuscript
writing, supporting information compilation. P.J.R: Study design,
data evaluation, final manuscript compilation, funding
(17) Clark, R. D., Weinhardt, K. K., Berger, J., Fisher, L. E.,
Brown, C. M., MacKinnon, A. C., Kilpatrick, A. T., and Spedding, M.
(1990) 1,9ꢀAlkanoꢀbridged 2,3,4,5ꢀtetrahydroꢀ1Hꢀ3ꢀbenzazepines
with affinity for the alpha 2ꢀadrenoceptor and the 5ꢀHT1A receptor. J
Med Chem 33, 633–641.
Funds and acknowledgements
This study was funded by the Faculty of Mathematics and Natural
sciences, University of Oslo (PJR). Kjemisk institute, UiO is
thanked for the PhD fellowship (SRA).
Corresponding author Patrick J. Riss Tel: +47 22857673. E-mail:
(18) Crosby, D. G. (1960) Joc 1969 25 569 1257, 569–570.
4
ACS Paragon Plus Environment