246
J. Mikroyannidis et al. / Chemical Physics Letters 483 (2009) 241–246
[12] S.A. Curran, A.V. Ellis, A. Vijayaraghavan, P.M. Ajayan, J. Chem. Phys. 120 (2004)
4. Conclusions
4886.
[13] Q. Li, J. Zhang, H. Yan, M. He, Z. Liu, Carbon 42 (2004) 287.
[14] C. Hu, Z. Chen, A. Shen, X. Shen, J. Li, S. Hu, Carbon 44 (2006) 428.
[15] F. Cheng, S. Zhang, A. Adronov, L. Echegoyen, F. Diederich, Chem. Eur. J. 12
(2006) 6062.
[16] C. Ehli et al., J. Am. Chem. Soc. 128 (2006) 11222.
[17] V. Georgakilas, K. Kordatos, M. Prato, D.M. Guldi, M. Holzinger, A. Hirsch, J. Am.
Chem. Soc. 124 (2002) 760.
Soluble, chromophore-functionalized MWCNTs have been syn-
thesized through the covalent incorporation of a fluorenevinylene
fluorescent moiety onto MWCNTs via the esterification of oxida-
tively etched MWCNTs. The MWCNT–fluorenevinylene composites
are soluble in common organic solvents such as tetrahydrofuran,
chloroform and dichloromethane without precipitation for weeks.
TEM and SEM images have shown that the functionalized MWCNTs
reveal less bundled nanostructures than the unfunctionalized
MWCNTs meaning that the conjugated functionality disrupts the
strong interactions between individual tubes. Raman spectroscopy
has proved the chemical modification of the MWCNTs and has also
indicated that the esterification reaction between MWCNT–COOH
and the fluorenevinylene has occurred in a good extension. Effi-
cient quenching of the fluorenevinylene PL in the composite
accompanied by an ultrafast decay of the transient PL intensity
of the composite indicates photoinduced electron transfer from
the fluorenevinylene chromophore to the MWCNTs.
[18] L. Qu et al., J. Chem. Phys. 117 (2002) 8089.
[19] R.B. Martin et al., J. Phys. Chem. B 108 (2004) 11447.
[20] M. Alvaro, P. Atienzar, J.L. Bourdelande, H. Garcia, Chem. Phys. Lett. 384 (2004)
119.
[21] H. Li, R.B. Martin, B.A. Harruff, R.A. Carino, R.F. Allard, Y.-P. Sun, Adv. Mater. 16
(2004) 896.
[22] D. Baskaran, J.W. Mays, X.P. Zhang, M.S. Bratcher, J. Am. Chem. Soc. 127 (2005)
6916.
[23] J. Zhang, G. Wang, Y.-S. Shon, O. Zhou, R. Superfine, R.W. Murray, J. Phys. Chem.
B 107 (2003) 3726.
[24] W. Zhu, N. Minami, S. Kazaoui, Y. Kim, J. Mater. Chem. 13 (2003) 2196.
[25] W. Zhu, N. Minami, S. Kazaoui, Y. Kim, J. Mater. Chem. 14 (2004) 1924.
[26] M. Alvaro, C. Aprile, P. Atienzar, H. Garcia, J. Phys. Chem. B 109 (2005) 7692.
[27] M. Alvaro, C. Aprile, B. Ferrer, H. Garcia, J. Am. Chem. Soc. 129 (2007) 5647.
[28] B. Ballesteros, G. De la Torre, C. Ehli, G.M.A. Rahman, F. Agullo-Rueda, D.M.
Guldi, T. Torres, J. Am. Chem. Soc. 129 (2007) 5061.
[29] S.-Y. Ju, F. Papadimitrakopoulos, J. Am. Chem. Soc. 130 (2008) 655.
[30] X. Yang, Y. Lu, Y. Ma, Y. Li, F. Du, Y. Chen, Chem. Phys. Lett. 420 (2006) 416.
[31] M.A. Herranz, N. Martin, S. Campidelli, M. Prato, G. Brehm, D.M. Guldi, Angew.
Chem. Int. Ed. 45 (2006) 4478.
Acknowledgements
[32] S. Gunes, H. Neugebauer, N.S. Sariciftci, Chem. Rev. 107 (2007) 1324.
[33] A.R. Murphy, J.M.J. Frechet, Chem. Rev. 107 (2007) 1066.
[34] S.-W. Hwang, S.-H. Chen, Y. Chen, J. Polym. Sci. Part A: Polym. Chem. 40 (2002)
2215.
K.P. acknowledges financial support by a ‘K. KARATHEODORIS’
grant from the University of Patras Research Committee, Patras,
Greece.
[35] V. Datsyuk et al., Carbon 46 (2008) 833.
[36] M.A. Hamon, H. Hui, P. Bhowmik, H.M.E. Itkis, R.C. Haddon, Appl. Phys. A 74
(2002) 333.
References
[37] M. Fakis, D. Anestopoulos, V. Giannetas, P. Persephonis, J. Mikroyannidis, J.
Phys. Chem. B 110 (2006) 12926.
[38] M. Fakis, D. Anestopoulos, V. Giannetas, P. Persephonis, J. Phys. Chem. B 110
(2006) 24897.
[39] B. Pan, D. Cui, F. Gao, R. He, Nanotechnology 17 (2006) 2483.
[40] H. Ago, M.S.P. Shaffer, D.S. Ginger, A.H. Windle, R.H. Friend, Phys. Rev. B 61
(2000) 2286.
[41] S. Chu, W. Yi, S. Wang, F. Li, W. Feng, Q. Gong, Chem. Phys. Lett. 451 (2008) 116.
[42] G. Xu, B. Zhu, Y. Han, Z. Bo, Polymer 48 (2007) 7510.
[43] G. Pagona et al., Adv. Funct. Mater. 17 (2007) 1705.
[44] S. Campidelli, C. Sooambar, E.L. Diz, C. Ehli, D.M. Guldi, M. Prato, J. Am. Chem.
Soc. 128 (2006) 12544.
[1] V. Sgobba, G.M.A. Rahman, C. Ehli, D.M. Guldi, in: F. Langa, J.F. Nierengarten
(Eds.), Covalent and Noncovalent Approaches Towards Multifunctional Carbon
Nanotube Materials, RSC Nanoscience and Nanotechnology Series, Cambridge,
2006, p. 329.
[2] P.R. Bandaru, J. Nanosci. Nanotechnol. 7 (2007) 1239.
[3] D.M. Guldi, G.M.A. Rahman, F. Zerbetto, M. Prato, Acc. Chem. Res. 38 (2005)
871.
[4] A. Javey, J. Guo, Q. Wang, M. Lundstrom, H. Dai, Nature 424 (2003) 654.
[5] D. Tasis, N. Tagmatarchis, A. Bianco, M. Prato, Chem. Rev. 106 (2006) 1105.
[6] D.B. Romero, M. Carrard, W. de Heer, L. Zuppiroli, Adv. Mater. 8 (1996) 899.
[7] S.A. Curran et al., Adv. Mater. 10 (1998) 1091.
[8] H. Ago, K. Petritsch, M.S.P. Shaffer, A.H. Windle, R.H. Friend, Adv. Mater. 11
(1999) 1281.
[45] M. D’Este, M. De Nardi, E. Menna, Eur. J. Org. Chem. (2006) 2517.
[46] F. Cordella, M. De Nardi, E. Menna, C. Hebert, M.A. Loi, Carbon 47 (2009) 1264.
[47] B.J. Landi, R.P. Raffaelle, S.L. Castro, S.G. Bailey, Progr. Photovolt. Res. Appl. 13
(2005) 165.
[9] B.Z. Tang, H. Xu, Macromolecules 32 (1999) 2569.
[10] X. Wang, Y. Liu, W. Qiu, D. Zhu, J. Mater. Chem. 12 (2002) 1636.
[11] H. Murakami, T. Nomura, N. Nakashima, Chem. Phys. Lett. 378 (2003) 481.