Coupling Synthesis of Heteroatom-Bridged Calixarenes
A R T I C L E S
13% yield of tetranitro-substituted tetraoxocalix[4]arene,9 while
the Pd(0)-catalyzed amination of 3-bromo-N-methylaniline
produced a mixture of azacalix[n]arenes (n ) 3-8) in very low
yields.10 Silicon-bridged calixarenes were synthesized by cou-
pling phenol or 1,3-dibromobenzene with dichlorodimethylsilane
in 16% or 12% yield, respectively.11 By incorporating hetero-
atoms with heteroaromatics, a few heteroatom-bridged calix-
heteroaromatics have also been prepared.7 Among them, silicon-
bridged calix[n]phosphaarenes are noticeable because they act
as ligands with strong π-acceptor properties.12 In almost all
cases, however, very low and unpractical chemical yields
(<20%) were obtained for heteroatom-bridged macrocyclic
compounds.7-13 As a consequence of difficulty of synthesis and
functionalization, the structures and recognition properties of
these appealing heteroatom-bridged calix(hetero)aromatics have
remained largely unexplored.
We envisioned that the introduction of oxygen and/or nitrogen
atoms as the bridge linkages in calix(hetero)aromatics would
result in a wide variety of fine-bridge-tuned macrocyclic cavities
because oxygen and, particularly, nitrogen atoms might adopt
sp3 and/or sp2 hybrid configurations with and/or without forming
conjugation with the neighboring (hetero)aromatics. Very
recently, we have established a fragment coupling approach to
synthesize azacalix[m]arene[n]pyridines (m ) n ) 2, 4) in a
total yield of 48%.14 The nitrogen-bridged calix[4]arene[4]-
pyridine prepared has been shown to exhibit indeed intriguing
structural property and remarkable capability to recognize [60]-
and [70]-fullerenes.14 Herein, we report a general, efficient, and
convenient synthesis of oxo- and/or azacalix[2]arene[2]triazines
based on the fragment coupling strategy. We will also show
that the bridging heteroatoms play indeed an important part in
determining the structural and spectroscopic properties of these
novel macrocycles.
reactivity of a cyanuric halide toward nucleophilic reagents in
a controlled fashion, we envisioned the synthetic advantages
of cyanuric halides in the construction of desired heteroatom-
bridged calix(hetero)aromatics.
Experimental Section
Melting points are uncorrected. Elemental analyses were performed
at the Analytical Laboratory of the Institute. All chemicals were dried
or purified according to standard procedures prior to use.
1,3-Bis(dichloro-s-triazinyloxy)benzene (3). To an ice-bath cooled
solution of cyanuric chloride 2 (5.55 g, 30 mmol) in tetrahydrofuran
(100 mL) was added dropwise a mixture of resorcinol 1 (1.65 g, 15
mmol) and diisopropylethylamine (4.48 g, 37.5 mmol) in tetrahydro-
furan (75 mL) during 2 h. The reaction mixture was stirred for another
2.5 h. After removal of diisopropylethylamine hydrochloride salt
through filtration, the filtrate was concentrated and chromatographed
on a silica gel column with a mixture of petroleum ether and ethyl
acetate as the mobile phase to give pure 1,3-bis(dichloro-s-triazinylox)-
benzene 3 (4.77 g, 78.3%) as a white solid: mp 140-142 °C (lit.22 mp
141-143 °C); IR (KBr) ν 1536, 1505, 1406 cm-1; 1H NMR (300 MHz,
CDCl3) δ 7.57 (t, J ) 8.2 Hz, 1H), 7.21 (dd, J ) 8.2 Hz, J ) 2.3 Hz,
2H), 7.11 (t, J ) 2.2 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ 173.3,
170.7, 151.4, 130.9, 119.8, 115.0; MS (EI) m/z (%) 410 (4) (M+ + 6),
408 (14) (M+ + 4) 406 (18) (M+ + 2), 404 (26) (M+). Anal. Calcd for
C12H4Cl4N6O2: C, 35.50; H, 0.99; N, 20.70. Found: C, 35.49; H, 1.18;
N, 20.57.
N,N′-Bis(dichloro-s-triazinyl)-m-phenylenediamine (11). Follow-
ing the procedure for the preparation of 3, the reaction of m-
phenylenediamine 5 (1.08 g, 10 mmol) with 2 (3.69 g, 20 mmol) in
the presence of diisopropylethylamine (3.23 g, 25 mmol) gave pure
N,N′-bis(dichloro-s-triazinyl)-m-phenylenediamine 11 (3.34 g, 82.7%)
as a white solid: mp 244-245 °C (lit.23 mp 230-231 °C); IR (KBr)
1
ν 3251, 3135, 1583, 1541, 1389 cm-1; H NMR (300 MHz, DMSO-
d6) δ 11.25 (s, 2H), 7.89 (t, J ) 1.8 Hz, 1H), 7.42-7.46 (m, 3H); 13
C
NMR (75 MHz, DMSO-d6) δ 169.7, 168.8, 163.8, 137.3, 129.2, 118.2,
114.6; MS (EI) m/z (%) 408 (5) (M+ + 6), 406 (37) (M+ + 4), 404
(100) (M+ + 2), 402 (68) (M+). Anal. Calcd for C12H6Cl4N8: C, 35.67;
H, 1.50; N, 27.73. Found: C, 35.44; H, 1.39; N, 27.70.
Triazine is a valuable element in molecular recognition and
self-assembly because triazine-based molecules including
melamine derivatives can act as both hydrogen bond donor and
acceptor to bind guest molecules such as carbohydrates, cyanuric
acid, and uracil derivatives through multiple hydrogen bond
interactions.15 Besides, recent theoretical calculations16 and
single-crystal molecular structure of a copper(II)-triazine
complex17 have indicated a potential application of triazine as
an electron-deficient π-aromatic component to interact with
anion species. Although a triazine element has been incorporated
into a few macrocyclic molecules,18-21 construction of calix-
arene scaffolds utilizing triazine as the skeleton building blocks
has been underestimated.20,21 Having considered the high
N-(Dichloro-s-triazinyl)-3-(dichloro-s-triazinyloxy)aniline (15).
Following the procedure for the preparation of 3, the reaction of
3-aminophenol 4 (1.1 g, 10 mmol) with 2 (3.7 g, 20 mmol) in the
presence of diisopropylethylamine (3.23 g, 25 mmol) gave pure
N-(dichloro-s-triazinyl)-3-(dichloro-s-triazinyloxy)aniline 15 (3.03 g,
74.8%) as a white solid: mp 205-207 °C (lit.24 mp 199-200 °C); IR
1
(KBr) ν 3289, 1610, 1575, 1536, 1510 cm-1; H NMR (300 MHz,
CDCl3) δ 7.62-7.64 (m, 2H), 7.49 (t, J ) 8.1 Hz, 1H), 7.41-7.44 (m,
(15) For leading references of melamine-cyanurate assemblies, see: (a)
Whitesides, G. M.; Mathias, J. P.; Seto, C. T. Science 1991, 254, 1312. (b)
Seto, C. T.; Whitesides, G. M. J. Am. Chem. Soc. 1993, 115, 905. (c) Seto,
C. T.; Mathias, J. P.; Whitesides, G. M. J. Am. Chem. Soc. 1993, 115,
1321. (d) Seto, C. T.; Whitesides, G. M. J. Am. Chem. Soc. 1993, 115,
1330. (e) Mathias, J. P.; Simanek, E. E.; Whitesides, G. M. J. Am. Chem.
Soc. 1994, 116, 4326. (f) Prins, L. J.; Huskens, J.; De Jong, F.; Timmerman,
P. Reinhoudt, D. N. Nature 1999, 398, 498. (g) Prins, L. J.; De Jong, F.;
Timmerman, P.; Reinhoudt, D. N. Nature 2000, 408, 181. (h) Prins, L. J.;
Joliffe, K. A.; Hulst, R. Timmerman, P.; Reinhoudt, D. N. J. Am. Chem.
Soc. 2000, 122, 3617. (i) Bielejewska, A. G.; Marjo, C. E.; Prins, L. J.;
Timmerman, P.; De Jong, F.; Reinhoudt, D. N. J. Am. Chem. Soc. 2001,
123, 7518. (j) Kawasaki, T.; Tokuhiro, M.; Kimizuka, N.; Kunitake, T. J.
Am. Chem. Soc. 2001, 123, 6792.
(7) For a useful overview of heteroatom-bridged calixarenes, see: Ko¨nig, B.;
Fonseca, M. H. Eur. J. Inorg. Chem. 2000, 2303.
(8) (a) Kumagai, H.; Hasegawa, M.; Miyanari, S.; Sugawa, Y.; Sato, Y.; Hori,
T.; Ueda, S.; Kamiyama, H.; Miyano, S. Tetrahedron Lett. 1997, 38, 3971.
(b) Iki, H.; Kabuto, C.; Fukushima, T.; Kumagai, H.; Takeya, H.; Miyanari,
S.; Miyashi, T.; Miyano, S. Tetrahedron 2000, 56, 1437. (c) Akdas, H.;
Bringel, L.; Graf, E.; Hosseini, M. W.; Mislin, G.; Pansanel, J.; De Cian,
A.; Fischer, J. Tetrahedron Lett. 1998, 39, 2311.
(9) Boros, E. E.; Andrews, C. W.; Davis, A. O. J. Org. Chem. 1996, 61, 2553.
(10) (a) Ito, A.; Ono, Y.; Tanaka, K. New J. Chem. 1998, 22, 779. (b) Ito, A.;
Ono, Y.; Tanaka, K. J. Org. Chem. 1999, 64, 8236.
(16) Mascal, M.; Armstrong, A.; Bartberger, M. D. J. Am. Chem. Soc. 2002,
124, 6274.
(11) (a) Ko¨nig, B.; Ro¨del, M.; Bubenitschek, P.; Jones, P. G.; Thondorf, I. J.
Org. Chem. 1995, 60, 7406. (b) Ko¨nig, B.; Ro¨del, M.; Bubenitschek, P.;
Jones, P. G. Angew. Chem., Int. Ed. Engl. 1995, 34, 661. (c) Yoshida, M.;
Goto, M.; Nakanishi, F. Organometallics 1999, 18, 1465.
(12) (a) Avarvari, N.; Mezailles, N.; Ricard, L.; Le Floch, P.; Mathey, F. Science
1998, 280, 1587. (b) Avarvari, N.; Maigrot, N.; Ricard, L.; Mathey, F.; Le
Floch, P. Chem.sEur. J. 1999, 5, 2109.
(13) Miyazaki, Y.; Kanbara, T.; Yamamoto, T. Tetrahedron Lett. 2002, 43, 7945.
(14) Wang, M.-X.; Zhang, X.-H.; Zheng, Q.-Y. Angew. Chem., Int. Ed. 2004,
43, 838.
(17) Demeshko, S.; Dechert, S.; Meyer, F. J. Am. Chem. Soc. 2004, 126, 4508.
(18) Anelli, P. L.; Lunazzi, L.; Montanari, F.; Quici, S. J. Org. Chem. 1984,
49, 4197.
(19) Lo¨wik, D. W. P.; Lowe, C. R. Eur. J. Org. Chem. 2001, 2825.
(20) Graubaum, H.; Lutze, G.; Tittelbach, F.; Bartoazek, M. J. Prakt. Chem./
Chem.-Ztg. 1995, 337, 401.
(21) Graubaum, H.; Lutze, G. Costisella, B. J. Prakt. Chem./Chem.-Ztg. 1997,
339, 266.
(22) Mangini, A.; Mazzanti, G.; Tundo, A. U.S. Patent 3,454,551, 1969.
(23) Beech, W. F. J. Chem. Soc. C 1967, 466.
9
J. AM. CHEM. SOC. VOL. 126, NO. 47, 2004 15413