JSSC=8689=TSK=VVC=BG
252
LI, CHEUNG, AND MAYR
complexes of Ag(I) (15). A double-chain structure featuring
alternating n stacking and ionic interactions is also present
in the one-dimensional solid [AgX(3,6-di(4-pyridyl)-1,2,4,5-
tetrazine)(MeCN)] (X"BF , PF ) (16). The possibility that
2. (a) J. S. Miller and A. J. Epstein, Prog. Inorg. Chem. 20, 1 (1976); (b) R.
Robson, B. F. Abrahams, S. R. Batten, R. W. Gable, B. F. Hoskins, and
J. Liu, in &&Supramolecular Architecture'' (T. Bein, Ed.), ACS Sympo-
sium Series 499, Am. Chem. Soc., Washington, DC, 1992; (c) O. M.
Yaghi, H. L. Li, Davis, D. Richardson, and T. L. Groy, Acc. Chem. Res.
31, 474 (1998); (d) P. J. Hagrman, D. Hagrman, and J. Zubieta, Angew.
Chem., Int. Ed. 38, 2638 (1999).
3. (a) F. A. Cotton and Y. Kim, J. Am. Chem. Soc. 115, 8511 (1993); (b) R.
E. Melendez, C. V. K. Sharma, M. J. Zaworotko, C. Bauer, and R. D.
Rogers, Angew. Chem., Int. Ed. Engl. 35, 2213 (1996); (c) B. F. Abraham,
S. R. Batten, H. Hamit, B. F. Hoskins, and R. Robson, Angew. Chem.,
Int. Ed. Engl. 34, 820 (1996); (d) G. L. Ning, M. Munakata, L. P. Wu,
M. Maekawa, T. Kuroda-Sowa, Y. Suenaga, and K. Sugimoto, Inorg.
Chem. 38, 1376 (1999).
4. (a) L.-F. Mao and A. Mayr, Inorg. Chem. 35, 3183 (1996); (b) J. Guo
and A. Mayr, Inorg. Chim. Acta 261, 141 (1997); (c) A. Mayr and L.-F.
Mao, Inorg. Chem. 37, 5776 (1998); (d) A. Mayr and J. Guo, Inorg.
Chem. 38, 921 (1999); (e) K. Y. Lau, A. Mayr, and K.-K. Cheung, Inorg.
Chim. Acta 285, 223 (1999).
5. W. P. Fehlhammer and M. Fritz, Chem. Rev. 93, 1243 (1993).
6. (a) L. Malatesta and F. Bonati, &&Isocyanide Complexes of Transition
Metals.'' Wiley, New York, 1969; (b) E. Singleton and H. E. Oos-
thuizen, Adv. Organomet. Chem. 22, 209 (1983).
ꢃ
ꢄ
the silver atoms in 2 are pushed toward the center of the
double chains by steric repulsions from the phenyl rings of
the adjacent double chains can be dismissed on the basis of
the relatively long Ag}C(arene) distances, ranging from
3.83}4.08 A. The local distortions of the linear CN}Ag}CN
chains also reveal a marked di!erence in the structural
robustness of the isocyanide}silver and nitrile}silver link-
ages. As the Ag atom is &&pulled out'' from the ideally linear
N}C}Ag}N}C grouping, the isocyanide carbon atom &&fol-
lows'' more than the nitrile nitrogen atom, causing the
metal}isocyanide group Ag(1)}C(1)}N(1) to bend by only 83
while the metal}nitrile group Ag(1)}N(2)}C(2) bends by 203.
This result provides another indication that metal}nitrile
bonds are probably not reliable linkages in situations where
structural robustness is desired. We have previously ob-
served the &&collapse'' of a normally linear Cu}N}C cop-
per}nitrile angle to only 1083 under the in#uence of crystal
packing forces (4a, 4c).
From a general perspective, cyanoisocyanoarenes may be
viewed as expanded neutral analogues of cyanide. In anal-
ogy to the coordination chemistry of cyanide (17), they can
be expected to give rise to a potentially rich variety of
coordination polymers. In this sense, the linear coordina-
tion polymer 2 is an expanded analogue of silver(I) cyanide,
whose solid-state structure consists of linear}Ag}C}N}Ag}
chains (18). In the context of this analogy, the structure of
7. D. Fortin, M. Drouin, M. Turcotte, and P. D. Harvey, J. Am. Chem.
Soc. 119, 531 (1997).
8. (a) D. Venkataraman, G. B. Gardner, S. Lee, and J. S. Moore, J. Am.
Chem. Soc. 117, 11600 (1995); (b) G. B. Gardner, Y.-H. Kiang, S. Lee, A.
Asgaonkar, and D. Venkataraman, J. Am. Chem. Soc. 118, 6946 (1996);
(c) W. Choe, Y.-H. Kiang, Z. Xu, and S. Lee, Chem. Mater. 11, 1776
(1999).
9. Z.-L. Lu, A. Mayr, and K.-K. Cheung, Inorg. Chim. Acta 284 (1999)
205.
10. DENZO, in &&The HKL Manual*A description of programs DENZO,
XDISPLAYF, and SCALEPACK,'' written by D. Gewirth, with the
cooperation of the program authors Z. Otwinowski and W. Minor,
1995.
2 may also be compared with the structure of AgCN ) 11. TeXsan: Crystal Structure Analysis Package, Molecular Structure
Corp., 1985 & 1992.
2AgNO (19). The structure of this mixed salt features
ꢅ
12. (a) M. E. Squires and A. Mayr, Inorg. Chim. Acta 264, 161 (1997); (b) S.
linear}Ag}C}N}Ag}chains separated by interspersed
Wang, A. Mayr, and K.-K. Cheung, J. Mater. Chem. 8, 1561 (1998);
AgNO units, whereby the oxygen atoms of the nitrate ions
(c) L. Yang, K.-K. Cheung, and A. Mayr. J. Organomet. Chem. 585, 26
(1999).
ꢅ
form relatively short contacts (3.0}3.2 A) with the silver
atoms in the neutral AgCN chains.
13. &&Gmelins Handbuch der Anorganischen Chemie,'' Silber, Teil B1,
p. 291. Verlag Chemie, Weinheim, 1971.
14. H. G. Smith and R. E. Rundle, J. Am. Chem. Soc. 80, 507 (1958).
15. K. A. Hirsch, S. R. Wilson, and J. S. Moore, J. Am. Chem. Soc. 119,
10401 (1997).
16. M. A. Withersby, A. J. Blake, N. R. Champness, P. Hubberstey, W.-S.
Li, and M. Schroder, Angew. Chem., Int. Ed. 36, 2327 (1997).
17. K. R. Dunbar and R. A. Heintz, Prog. Inorg. Chem. 45, 283
(1997).
18. (a) C. D. West, Z. Kristallogr. 90, 555 (1935); (b) &&Gmelins Handbuch
der Anorganischen Chemie,'' Silber, Teil B3, p. 299. Verlag Chemie,
Weinheim, 1973.
ACKNOWLEDGMENTS
Support for this work by the Committee on Conference and Research
Grants of The University of Hong Kong and by the Hong Kong Research
Grants Council is gratefully acknowledged.
REFERENCES
1. J. C. Bailar, in &&Prep. Inorg. Reactions'' (W. L. Jolly, Ed.), Vol. 1,
pp. 1}25. Interscience, New York, 1964.
19. D. Britton and J. D. Dunitz, Acta Crystallogr. 19, 815 (1965).