The work was partly supported by Grants-in Aid for
Scientific Research from the Ministry of Education, Science,
Sports and Culture of Japan. We are also grateful to Dr Y.
Takahashi (JEOL) for recording the FAB mass spectra of
porphyrins (8a and 10a).
Notes and references
† New compounds gave satisfactory elementary analyses. Selected data: for
1
5: white plates, mp 144–145 °C, H NMR (CDCl3, J/Hz) d 1.39 (3H, t, J
7.08), 1.58–1.80 (4H, m), 4.28 (1H, m), 4.33 (2H, q, J 7.33, 14.16), 4.79
(1H, m), 6.66 (1H, d, J 2.44), 7.04–7.13 (2H, m), 7.16–7.32 (2H, m), 8.41
(1H, br s); m/z 267 (M+, 9), 239 (95), 193 (100). For 6: white needles, mp
182–183 °C, 1H NMR (CDCl3) d 1.65–1.83 (4H, m), 4.26 (2H, m), 6.53
(2H, d, J 2.44), 7.03–7.07 (2H, m), 7.18–7.22 (2H, m), 7.53 (1H, br s); m/z
(EI) 195 (M+, 14), 167 (100). For 7a (a mixture of four isomers): 1H NMR
(CDCl3) d 24.66 (2H, br s), 2.15–2.52 (16H, m), 6.18 (8H, m), 7.25 (8H,
m), 7.80 (8H, m), 10.52 (4H, m); m/z (FAB) 823 (M+ + 1). Calc. for
C
60H46N4·0.5H2O: C, 86.61; H, 5.69; N, 6.73. Found: C, 86.49; H, 5.71; N,
Scheme 3 Reagents and conditions: i, AcOH–PriOH (1+1), reflux, 17 h; ii,
3,4-diethylpyrrole-2,5-carbaldehyde, TFA, room temp., 2 h; iii, Et3N, DDQ,
CHCl3, room temp., 1 h, 18% for three steps; iv, 290 °C, 100%.
6.53%. For 8a: m/z (FAB) not assigned. Calc. for C52H30N4·H2O: C, 85.69;
H, 4.43; N, 7.69. Found: C, 85.92; H, 4.31; N, 7.62%. For 9a (a mixture of
four isomers): 1H NMR (CDCl3) d 1.0–2.2 (16H, m), 3.77 (8H, m), 6.9–7.2
(16H, m), 7.9–8.6 (20H, m); m/z (FAB) 1189 (M+). Calc. for
C84H60N4·3.5H2O: C, 80.47; H, 5.39; N, 4.47. Found: C, 80.44; H, 5.35; N,
4.21%. For 10a: 1H NMR (CDCl3) d 7.48 (8H, m), 7.67 (8H, s), 7.69 (8H,
m), 7.98 (8H, m), 8.11 (4H, m), 8.39 (8H, m); m/z (FAB) 1076 (M+). Calc.
for C76H44N4·2.5H2O: C, 81.24; H, 4.40; N, 4.99. Found: C, 81.53; H, 4.58;
N, 4.84%. For 12: 1H NMR (CDCl3) d 23.95 (2H, br s), 1.15 (6H, t, J 7.33),
1.81 (4H, m), 1.92 (6H, t, J 7.33), 2.21 (2H, m), 2.28–2.39 (4H, m), 2.31
(2H, m), 3.63 (6H, s), 4.09–4.14 (8H, m), 6.07 (2H, m), 7.25 (2H, m), 7.78
(2H, m), 10.11 (2H, s), 10.23 (2H, s); m/z (FAB) 635 (M+ + 1). Calc. for
Table 1 Selected UV–VIS data for [2,3]naphthoporphyrins and their
precursors
Porphyrin
lmax (CHCl3)/nm (log10 e)
7a
8aa
9a
392 (5.20), 495 (4.14), 527 (3.66), 563 (3.69), 615 (3.12)
359 (0.34), 419 (0.50), 464 (1.00), 697 (0.13), 773 (0.87)
349 (3.29), 426 (5.43), 549 (4.17)
10a
12
13
487 (4.96), 662 (3.73), 723 (4.87)
399 (5.17), 497 (4.12), 531 (3.86), 566 (3.73), 619 (3.49)
419 (5.34), 519 (3.92), 551 (4.53), 587 (3.75), 643 (4.34)
C
44H50N4·CH3OH: C, 81.04; H, 8.16; N, 8.40. Found: C, 81.38; H, 8.18; N,
8.11%. For 13: 1H NMR (CDCl3) d 23.52 (2H, br s), 1.14 (6H, t, J 7.32),
1.78 (4H, m), 1.89 (6H, t, J 7.32), 2.29 (4H, m), 3.63 (6H, m), 3.93–4.12
(8H, m), 7.80 (2H, m), 8.51 (2H, m), 9.56 (2H, s), 9.96 (2H, s), 10.18 (2H,
s); m/z (FAB) 607 (M+ + 1). Calc. for C42H46N4·0.5H2O: C, 81.91; H, 7.69;
N, 9.10. Found: C, 81.78; H, 7.64; N, 8.78%.
a In 5% TFA–CHCl3; here relative intensities are given in parentheses.
Absorption spectrum data of [2,3]naphthoporphyrins and
their precursors are summarized in Table 1. As porphyrin 8a
was insoluble in most solvents, its absorption spectrum was
measured in 5% TFA-CHCl3. The Soret and Q bands of the
dication 8a were observed at 464, 697 and 773 nm, respectively.
The absorbance at 773 nm is unusually intense (0.87 3 that of
Soret band), showing behaviour reminiscent of phthalocya-
nines. meso-Tetraphenyltetra[2,3]napthoporphyrin 10a was
moderately soluble in organic solvents such as CH2Cl2 or
CHCl3. The Soret band of 10a was rather weak compared to that
of other porphyrins, owing to steric hindrance between meso-Ph
and fused [2,3]naphthalene rings. By contrast, the intensity of
the absorption at 723 nm is very strong (log10 e = 4.87), this
value is considerably larger than that of known p-extended
meso-tetraphenylporphyrins.3 The UV–VIS spectrum of 13 is
rhodo-type (Q band: III > I > IV > II) which is typical for
monobenzoporphyrins.7
1 S. A. Vinogradov and D. F. Wilson, J. Chem. Soc., Perkin Trans. 2,
1995, 103; P. Chen, A. S. Dvornikov, M. Nakashima, J. F. Roach, D. M.
Alabran and P. M. Rentzepis, J. Phys. Chem., 1996, 100, 17 507.
2 R. Bonnett, Chem. Soc. Rev., 1995, 24, 19 and references therein.
3 N. Ono, H. Hironaga, K. Ono, S. Kaneko, T. Murashima, T. Ueda, C.
Tsukamura and T. Ogawa, J. Chem. Soc., Perkin Trans. 1, 1996, 417;
T. D. Lash, P. Chandrasekar, A. T. Osuma, S. T. Chaney and J. D.
Spence, J. Org. Chem., 1998, 63, 8455.
4 R. Bonnett and S. A. North, Adv. Heterocycl. Chem., 1981, 29, 341.
5 J. E. Shields and J. Bornstein, Chem. Ind. (London), 1967, 1404; W.
Rettig and J. Wirz, Helv. Chim. Acta, 1976, 59, 1054; D. E. Remy and
F. H. Bissett, J. Org. Chem., 1978, 43, 4469.
6 M. Rein and M. Hanack, Chem. Ber., 1988, 121, 1601; A. M.
Vorotnikov, V. N. Kopranenkov and E. A. Lukyanets, J. Gen. Chem.,
USSR, 1991, 61, 1128; N. Kobayashi, W. A. Nevin, S. Mizunuma, H.
Awaji and M. Yamaguchi, Chem. Phys. Lett., 1993, 205, 51; A. C.
Tome, P. S. S. Lacerda, M. G. P. M. S. Neves and J. A. S. Cavaleiro,
Chem. Commun., 1997, 1199.
7 S. Ito, N. Ochi, T. Murashima, H. Uno and N. Ono, Heterocycles, 2000,
52, 399 and references therein.
8 S. Ito, T. Murashima and N. Ono, J. Chem. Soc., Perkin Trans. 1, 1997,
3161.
9 Pyrrole synthesis from a,b-unsaturated sulfones; Y. Abel and F.-P.
Montforts, Tetrahedron Lett., 1997, 38, 1745.
In conclusion, we have succeeded in developing a new
strategy for the preparation of [2,3]naphthoporphyrins using
4,9-ethano-2H-benz[f]isoindole as a synthetic equivalent of 2H-
benz[f]isoindole. This strategy may extend to the synthesis of
other p-extended molecules such as polypyrroles or pyrrole
oligomers, which are fused with naphthalene rings.
10 T. D. Lash, Chem. Eur. J., 1996, 2, 1197 and references therein.
894
Chem. Commun., 2000, 893–894