10.1002/ejoc.201700887
European Journal of Organic Chemistry
FULL PAPER
[6] (a) M. Kidwai, V. Bansal, A. Saxena, R. Shankar, S. Mozumdar,
Tetrahedron Lett. 2006, 47, 4161–4165; (b) L. He, J. Ni, L. C. Wang, F. J. Yu,
Y. Cao, H. Y. He, K. N. Fan, Chem. Eur. J. 2009, 15, 11833–11836; (c) T.
Jimenez, E. Barea, J. E. Oltra, J. M. Cuerva, J. Justicia, J. Org. Chem. 2010,
75, 7022–7025; (d) T. Taniguchi, D. P. Curran, Org. Lett. 2012, 14,
4540−4543; (e) L. Postigo, B. Royo, Adv. Synth. Catal. 2012, 354, 2613–2618;
(f) J. Lee, T. Ryu, S. Park, P. H. Lee, J. Org. Chem. 2012, 77, 4821−4825; (g)
G. Wienhçfer, F. A. Westerhaus, K. Junge, R. Ludwig, M. Beller, Chem. Eur. J.
2013, 19, 7701–7707; (h) S. Warratz, L. Postigo, B. Royo, Organometallics.
2013, 32, 893–897; (i) I. Cano, M. A. Chapman, A. Urakawa, M. N. W. P.
Leeuwen van, J. Am. Chem. Soc. 2014, 136, 2520−2528; (j) A. Wang, Z. Yang,
J. Liu, Q. Gui, X. Chen, Z. Tan, J. -C. Shi, Synth. Commun. 2014, 44, 280–
288; (k) H. S. Lee, H. M. Nam, Y. M. Cho, W. B. Yoo, J. H. Rhee, M. C. Yoon,
Synth. Commun. 2006, 36, 2469–2474.
1-Benzyl-5-fluoro-3-hydroxyindoline-2-one
(11d):
Following GP-III, 5-fluoro-N-benzyl isatin 10d (254 mg, 1.0 mmol,
1.0 equiv.) afforded 1-benzyl-5-fluoro-3-hydroxyindolin-2-one
11d (254 mg, 99%) as a white solid. 1H NMR (400 MHz, CDCl3):
4.79 (2H, dd, J = 15.2, 15.3 Hz), 5.23 (1H, s), 5.59 (1H, br s),
6.56 (1H, dd, J = 4.9, 3.7 Hz), 6.83 (1H, t, J = 9.1 Hz), 7.27-7.15
(6H, m); 13C (125 MHz, CDCl3): 44.0, 69.9, 110.1, 110.2, 113.3,
113.5, 115.6, 115.8, 117.0, 117.2, 127.0, 127.3, 127.7, 127.9,
128.8, 128.9, 129.1, 129.2, 134.5, 135.0, 138.6, 139.4, 158.4,
160.8, 177.6; HRMS (ESI) calcd for C15H10FNO2 [M+H]+:
258.0696; Found: 258.0698.
1-benzyl-5-(trifluoromethoxy)-3-hydroxyindoline-2-one
[7] P. Delair, J. L. Luche, J. Chem. Soc. Chem. Commun. 1989, 398-399.
[8] (a) W. C. Zhang, C. J. Li, J. Chem. Soc. Perkin Trans. 1998, 1, 3131–3132;
(b) W. C. Zhang, C. J. Li, J. Org. Chem. 1999, 64, 3230−3236.
[9] R. D. Rieke, S. -H. Kim, J. Org. Chem. 1998, 63, 5235−5239.
[10] (a) T. Hirao, B. Hatano, M. Asahara, Y. Muguruma, A. Ogawa,
Tetrahedron Lett. 1998, 39, 5247−5248; (b) M. Billamboz, N. Sotto, C. C.
Villettea, C. Len, RSC Adv. 2015, 5, 46026-46030; (c) N. Sotto, M. Billamboz,
C. Villettea, C. Len, J. Org. Chem. 2015, 80, 6375−6380; (d) N. Sotto, C.
Cazorla, C. Villette, M. Billamboz, C. Len, J. Org. Chem. 2016, 81,
11065−11071.
(11e): Following GP-III, 5-trifluoromethoxy-N-benzyl isatin 10e
(320 mg, 1.0 mmol, 1.0 equiv.) afforded
1-benzyl-5-
trifluoromethoxy-3-hydroxyindolin-2-one 11e (310 mg, 96%) as a
white solid. 1H NMR (500 MHz, CDCl3): 4.62 (1H, s), 4.79 (2H,
dd, J = 15.8, 15.1 Hz), 5.12 (1H, s), 6.61 (1H, d, J = 8.4 Hz),
7.00 (1H, d, J = 8.4 Hz), 7.29-7.18 (6H, m); 13C (125 MHz,
CDCl3): 44.2, 69.8, 110.2, 119.4, 123.0, 124.1, 127.2, 127.4,
127.8, 127.9, 128.2, 128.6, 128.7, 129.0, 129.1, 134.4, 134.9,
141.0, 141.6, 142.2, 145.4, 177.2; HRMS (ESI) calcd for
C16H10F3NO3 [M+H]+: 324.0613; Found: 324.0603.
[11] (a) R. Nomura, T. Matsuno, T. Endo, J. Am. Chem. Soc. 1996, 118,
11666−11667; (b) S. Talukdar, J. M. Fang, J. Org. Chem. 2001, 66, 330–333.
[12] M. Hulce, T. LaVaute, Tetrahedron Lett. 1988, 29, 525−528.
[13] X. Xu, T. Hirao, J. Org. Chem. 2005, 70, 8594−8596.
Radical quenching experiment: To a stirring solution of 4-
methylbenzaldehyde 1a1 (1.0 mmol) in THF was added Zn dust
(5.0 mmol), aqueous NH4Cl solution (8 M) and TEMPO or
Galvinoxyl (1 mmol) at the same time. The reaction mixture was
stirred at room temperature for 30 min. No product formation
was observed.
[14] R. Hekmatshoar, M. M. Heravi, S. Y. Beheshtiha, F. Faridbood, Monatsh.
Chem. 2002, 133, 195−197.
[15] (a) M. L. Di Vona, V. Rosnati, J. Org. Chem. 1991, 56, 4269-4273; (b) W.
Lu, T. H. Chan, J. Org. Chem. 2000, 65, 8589-8594; (c) S. M. Kelly, B. H.
Lipshutz, Org. Lett. 2014, 16, 98−101; (d) W. Lin, X. Zhang, Z. He, Y. Jin, L.
Gong, A. Mi, Synth. Commun. 2002, 32, 3279−3284.
[16] D. Panda, M. Debnath, S. Mandal, I. Bessi, H. Schwalbe, J. Dash,
Scientific Reports. 2015, 5, 13183.
[17] S. Pagoti, T. Ghosh, J. Dash, Chemistry Select. 2016, 1, 4386−4391.
[18] (a) H. Hata, S. Shimizu, S. Hattori, H. Yamada, J. Org. Chem. 1990, 55,
4377−4380; (b) J.-F. Carpentier, A. Mortreux, Tetrahedron Assym. 1997, 8,
1083–1099; (c) O. J. Sonderegger, T. Bürgi, L. K. Limbach, A. Baiker, J. Mol.
Catal. A: Chem. 2004, 217, 93–101.
Acknowledgements ((optional))
We thank DST India for research funding. JD thanks DST for
a SwarnaJayanti fellowship. TM and SJ thank CSIR-India for
research fellowships.
[19] S. Jayakumar, S. Muthusamy, M. Prakash, V. Kesavan, Eur. J. Org.
Chem. 2014, 1893–1898.
[20] C. Liu, H. Bao, D. Wang, X. Wang, X. Li, Y. Hu, Tetrahedron Lett. 2015,
50, 6460–6462.
Keywords: Aldehyde · Chemoselective · Isatin · Ketone ·
Reduction · Zn
[21] T. Slagbrand, A. Volkov, P. Trillo, F. Tinnis, H. Adolfsson, ACS. Catal.
2017, 7, 1771–1775.
[22] K. Leonard, J. J. Marugan, P. Rabiosson, R. Calvo, M. J. Gushue, K. H.
Koblish, J. Lattanze, S. Zhao, D. M. Cummings, R. M. Player, C. A. Maroney,
T. Lu, Bioorg. Med. Chem. Lett. 2006, 16, 3463–3468.
References
[23] C. He, X. Zhang, R. Huang, J. Pan, J. Li, X. Ling, Y. Xiong, X. Zhu,
Tetrahedron Lett. 2014, 55, 4458–4462.
[1]. (a) E. R. H. Walker, Chem. Soc. Rev. 1976, 23–50; (b) C. F. Lane, Chem.
Rev. 1976, 76, 773–799; (c) H. C. Brown, S. Krishnamurthy, Tetrahedron.
1979, 35, 567–607; (d) Comprehensive Organic Synthesis, 1st ed.; B. M. Trost,
I. Fleming, Eds.; Pergamon Press: Oxford, UK, 1991; Vol. 8.; (e) M. Beller, C.
Bolm, Transition Metals for Organic Synthesis, Wiley-VCH, Weinheim, 2004,
145–162.
[24] N. Kumari, S. Jha, K. S. Mishra, S. Bhattacharya, Chem Plus Chem. 2014,
79, 1059–1064.
[25] B. F. McGuinness, K.-K. Ho, T. M. Stauffer, L. L. Rokosz, N. Mannava, S.
G. Kultgen, K. Saionz, A. Klon, W. Chen, H. Desai, W. L. Rogers, M. Webb, J.
Yin, Y. Jiang, T. Li, H. Yan, K. Jing, S. Zhang, K. K. Majumdar, V. Srivastava,
S. Saha, Bioorg. Med. Chem. Lett. 2010, 20, 7414–7420.
[2] (a) H. I. Schlesinger, H. C. Brown, H. R. Hoekstra, L. R. Rapp, J. Am.
Chem. Soc. 1953, 75, 199−204; (b) R. F. Borch, M. D. Bernstein, H. D. Durst,
J. Am. Chem. Soc. 1971, 93, 2897−2904; (c) B. Figadhre, C. Chaboche, X.
Franck, J. F. Pyrat, A. Cave, J. Org. Chem. 1994, 59, 7138−7141.
[26] T. Urayama, T. Mitsudome, Z. Maeno, T. Mizugaki, K. Jitsukawa, K.
Kaneda, Chem. Eur. J. 2016, 22, 17962–17966.
[27] A. Bruneau-Voisine, D. Wang, T. Roisnel, C. Darcel, J. -B. Sortais, Catal.
Comm. 2017, 92, 1–4.
[3] E. R. Burkhardt, K. Matos, Chem. Rev. 2006, 106, 2617–2650.
[4] (a) L. Clarke, G. J. Roff, in Handbook of Homogeneous Hydrogenation;
(Eds: G. De Vries, C. J. Elsevier), WILEY-VCH: Weinheim, 2007, p. 413; (b) R.
A. W. Johnstone, A. H. Wilby, I. D. Entwistle, Chem. Rev. 1985, 85, 129–170.
[5] (a) J. S. Deetz, C. A. Luehr, B. L. Vallee, Biochemistry, 1984, 23, 6822–
6828; (b) S. Rodriguez, M. Kayser, J. D. Stewart, Org. Lett. 1999, 1, 1153–
1155; (c) I. A. Kaluzna, T. Matsuda, A. K. Sewell, J. D. Stewart, J. Am. Chem.
Soc. 2004, 126, 12827–12832; (d) I. A. Kaluzna, , B. D. Feske, W. Wittayanan,
I. Ghiviriga, J. D. Stewart, J. Org. Chem. 2005, 70, 342–345.
[28] L. Fu, M. Niggemann, Chem. Eur. J. 2015, 21, 6367–6370.
[29] S. Kumar, P. Kaur, A. Mittal, P. Singh, Tetrahedron. 2006, 62, 4018-4026.
[30] T. Zhang, J. Li, S. Zhang, B. Xue, H. Sun, X. Li, O. Fuhr, D. Fenske,
Organometallics. 2016, 35, 3538–3545.
[31] S. R. Roy, S. C. Sau, S. K. Mandal, J. Org. Chem. 2014, 79, 9150−9160.
This article is protected by copyright. All rights reserved.