distances thus supporting a greater contribution from B. It is
therefore evident that bridging guanidinates are also capable of
considerable electronic flexibility.
Acknowledgements
We thank the Engineering and Physical Science Research
Council (EPSRC) for studentships (L. A. M. and S. P.) and
provision of a 4-circle diffractometer, The Royal Society, The
Leverhulme Trust and The Nuffield Foundation for financial
support. We also thank Dr E. McInnes and the EPSRC EPR
spectroscopy service at the University of Manchester for the
spectrum of complex 1.
Fig. 5 Intraligand C–N bond distances for guanidinate ligands in
a number of structurally characterised complexes. [Ru{η2-(NPh)2-
CNHPh}3] 1; [Pt{η2-(NPh)2CNHPh}2] 2; [Ti{η2-(NPh)2CNEt2}2Cl2] 3;
[Ru(η-p-PriC6H4Me){η2-(NPh)2CNHPh}Cl] 4;1 [Mo2{µ-η2-(NPh)2CN-
HPh}4] 5;15 [Mo2{µ-η2-(NPh)2CNHPh}4]ϩ 6;15 [Zr{η2-(NCy)2CN-
(SiMe3)2}2Cl2] 7;2 [Ta{η2-(NCy)2CNMe2}(NMe2)4] 8.7 * Mean values
for the number of crystallographically independent guanidinate ligands
in the complex.
References
1 P. J. Bailey, L. A. Mitchell and S. Parsons, J. Chem. Soc., Dalton
Trans., 1996, 2839.
2 D. Wood, G. P. A. Yap and D. S. Richeson, Inorg. Chem., 1999, 38,
5788.
3 N. Thirupathi, G. P. A. Yap and D. S. Richeson, Chem. Commun.,
1999, 2483.
4 J. M. Decams, L. G. H. Pfalzgraf and J. Vaissermann, Polyhedron,
1999, 18, 2885.
5 G. R. Griesbrecht, A. Shafir and J. Arnold, J. Chem. Soc., Dalton
Trans., 1999, 3601.
6 M. K. T. Tin, N. Thirupathi, G. P. A. Yap and D. S. Richeson,
J. Chem. Soc., Dalton Trans., 1999, 2947.
7 M. K. T. Tin, G. P. A. Yap and D. S. Richeson, Inorg. Chem., 1999,
38, 998.
8 K. T. Holman, S. D. Robinson, A. Sahajpal and J. W. Steed, J. Chem.
Soc., Dalton Trans., 1997, 3349.
9 K. T. Holman, S. D. Robinson, A. Sahajpal and J. W. Steed, J. Chem.
Soc., Dalton Trans., 1999, 15.
10 M. K. T. Tin, G. P. A. Yap and D. S. Richeson, Inorg. Chem., 1998,
37, 6728.
11 Y. L. Zhou, G. P. A. Yap and D. S. Richeson, Organometallics, 1998,
17, 4387.
and CN3 planes to be achieved, however the angle between
these planes is 80.7Њ, furthermore the unco-ordinated nitrogen
is distinctly pyramidal with the sum of the C–N–C angles at
this atom totalling to only 351Њ. Again the C–N bond to the
unco-ordinated nitrogen is the longest, as would be anticipated
from these observations. Inspection of the crystallographically
determined structure suggests that these features are not
sterically imposed and must therefore reflect the electronic
requirements of the metal. Tantalum() would certainly be
expected to exhibit very strong π-acceptor behaviour which
would elicit a strong contribution from the B resonance form of
the ligand (Fig. 1), however it is apparent that its electronic
requirement is satisfied by the four dimethylamido ligands also
co-ordinated to the metal, all of which are planar at nitrogen.
These observations contrast with the data reported here for 3 in
which the unco-ordinated nitrogen atoms in the two guan-
idinate ligands bear two ethyl groups. In this titanium() com-
plex all three C–N bond distances are statistically identical, and
although the steric bulk of the ethyl groups forces the NC2
plane out of the CN3 ligand plane by 30.4Њ, it is planar with
the three C–N–C angles totalling to 360Њ. Since the evident sp2
hybridisation of this nitrogen atom cannot be a result of con-
jugation with the ethyl substituents, a circumstance which can-
not be ruled out for ligands bearing aromatic or silicon groups
at this position, it is clear that in this complex a significant
contribution from B is present. This is, to our knowledge, the
first example of a chelating guanidinate where this may conclu-
sively be stated. A comparison of the C–N distances in the
ligand CN3 core in complexes 2 and 4 shows that they are very
similar, and reflect the low oxidation state of the ruthenium()
and platinum() metal ions which would not be expected to
require a significant contribution from resonance form B. It
might be anticipated that the higher oxidation state in the
ruthenium() complex 1 would be reflected in a relative short-
ening of the unco-ordinated C–N bonds in the guanidinate
ligands, however there is no evidence for this. The dimeric
molybdenum complexes 5 and 6 do however illustrate the effect
upon the guanidinate ligand of changing the metal oxidation
state. In the dimolybdenum() system 5 the ligand C–N dis-
tances are very similar to those in 1, 2 and 4, however the one
electron oxidation of this complex results in significant changes
within the guanidinate ligands such that the C–N bond to the
unco-ordinated nitrogen is now the shortest of the three indi-
cating a significantly greater contribution from B (Fig. 1). The
mean values of the Mo–N bond distances of 2.166(5) for 5 and
2.133(7) Å for 6 also suggest a shortening of the Mo–N bond
12 S. L. Aeilts, M. P. Coles, D. G. Swenson, R. F. Jordan and V. G.
Young, Organometallics, 1998, 17, 3265.
13 J. R. da S. Maia, P. A. Gazard, M. Kilner, A. S. Batsanov and
J. A. K. Howard, J. Chem. Soc., Dalton Trans., 1997, 4625.
14 M. B. Dinger and W. Henderson, Chem. Commun., 1996, 211.
15 P. J. Bailey, S. F. Bone, L. A. Mitchell, S. Parsons, K. J. Taylor and
L. J. Yellowlees, Inorg. Chem., 1997, 36, 867; Inorg. Chem., 1997, 36,
5420.
16 P. J. Bailey, K. J. Grant, S. Pace, S. Parsons and L. J. Stewart,
J. Chem. Soc., Dalton Trans., 1997, 4263.
17 P. J. Bailey, A. J. Blake, M. Kryszczuk, S. Parsons and D. Reed,
J. Chem. Soc., Chem. Commun., 1995, 1647; P. J. Bailey, L. A.
Mitchell, P. R. Raithby, M.-A. Rennie, K. Verhorevoort and D. S.
Wright, Chem. Commun., 1996, 1351; P. J. Bailey, R. O. Gould, C. N.
Harmer, S. Pace, A. Steiner and D. S. Wright, Chem. Commun.,
1997, 1161.
18 G. K. Anderson and M. Lin, Inorg. Synth., 1990, 28, 60.
19 M. A. Bennett and A. K. Smith, J. Chem. Soc., Dalton Trans., 1974,
233.
20 A. Altomare, G. Cascarano, C. Giacovazzo and A. Gualardi,
J. Appl. Crystallogr., 1993, 26, 343.
21 F. A. Cotton, G. W. Rice and J. C. Sekutowski, Inorg. Chem., 1979,
18, 1143.
22 J. A. Clark, M. Kilner and A. Pietrzykowski, Inorg. Chim. Acta,
1984, 82, 85; F. A. Cotton, L. M. Daniels and C. A. Murillo, Inorg.
Chim. Acta, 1994, 224, 5.
23 M. Corebett, B. F. Hoskins, N. J. McLeod and B. P. O’Day, Aust.
J. Chem., 1975, 28, 2377; F. A. Cotton, Chem. Soc. Rev., 1975, 4, 27;
Acc. Chem. Res., 1978, 11, 225.
24 J. Barker, N. Cameron, M. Kilner, M. M. Mahoud and S. Wallwork,
J. Chem. Soc., Dalton Trans., 1986, 1359.
25 J. Barker, M. Kilner and R. O. Gould, J. Chem. Soc., Dalton Trans.,
1987, 2687.
26 R. F. Jordan and M. P. Coles, Int. Pat. Appl., WO98/40421, 1998.
27 H. W. Roesky, B. Meller, M. Noltemeyer, H.-G. Schmidt, U. Scholz
and G. M. Sheldrick, Chem. Ber., 1988, 121, 1403.
28 A. Littke, N. Sleiman, C. Bensimon, D. S. Richeson, G. P. A. Yap
and S. J. Brown, Organometallics, 1998, 17, 446.
J. Chem. Soc., Dalton Trans., 2000, 1887–1891
1891