2354 J ournal of Medicinal Chemistry, 2002, Vol. 45, No. 12
Letters
human osteoclast cathepsin K. Expression, purification, activa-
tion and substrate identification. J . Biol. Chem. 1996, 271,
12517-12524.
In conclusion, we have discovered a novel class of
potent and selective cathepsin K inhibitors whose
activity does not depend on the covalent interaction with
the cysteine residue at the active site.
(5) Saftig, P.; Hunziker, E.; Wehmeyer, O.; J ones, S.; Boyde, A.;
Rommerskirch, W.; Moritz, J . D.; Schu, P.; von Figura, K.
Impaired osteoclastic bone resorption leads to osteopetrosis in
cathepsin-K-deficient mice. Proc. Natl. Acad. Sci. U.S.A. 1998,
95, 13453-13458.
Ack n ow led gm en t. The authors thank M. Bisping,
D. Huerzeler, M. Kindler, P. Lerch, B. Mathys, G.
Schreiber, Y. Seltenmeyer, and A. Wigg for their excel-
lent technical assistance. Dr. T. Buhl, Dr. K. Gohda, Dr.
M. Missbach, and Dr. R. Lattmann are acknowledged
for helpful discussions.
(6) Gowen, M.; Lazner, F.; Dodds, R.; Kapadia, R.; Feild, J .; Tavaria,
M.; Bertoncello, I.; Drake, F.; Zavarselk, S.; Tellis, I.; Hertzog,
P.; Debouck, C.; Kola, I. Cathepsin K knockout mice develop
osteopetrosis due to a deficit in matrix degradation but not
demineralization. J . Bone Miner. Res. 1999, 14, 1654-1663.
(7) Gelb, B. D.; Edelson, J . G.; Desnick, R. J . Linkage of pycnody-
sostosis to chromosome 1q21 by homozygosity mapping. Nat.
Genet. 1995, 10, 235-237.
(8) Polymeropoulos, M. H.; Ortiz De Luna, R. I.; Ide, S. E.; Torres,
R.; Rubenstein, J .; Francomano, C. A. The gene for pycnodys-
ostosis maps to human chromosome 1cen-q121. Nat. Genet. 1995,
10, 238-239.
(9) Hou, W. S.; Bro¨mme, D.; Zhao, Y.; Mehler, E.; Dushey, C.;
Weinstein, H.; Miranda, C. S.; Fraga, C.; Greig, F.; Carey, J .;
Rimon, D. L.; Desnick, R. J .; Gelb, B. D. Characterization of
novel cathepsin K mutations in the pro and mature polypeptide
regions causing pycnodysostosis. J . Clin. Invest. 1999, 103, 731-
738.
(10) For recent reviews, see the following: (a) Leung, D.; Abbenante,
G.; Fairlie, D. P. Protease inhibitors: current status and future
prospects. J . Med. Chem. 2000, 43, 305-341. (b) Yamashita, D.
S.; Dodds, R. A. Cathepsin K and the design of inhibitors of
cathepsin K. Curr. Pharm. Des. 2000, 6, 1-24. (c) Veber, D. F.;
Thompson, S. K. The therapeutic potential of advances in
cysteine protease inhibitor design. Curr. Opin. Drug Discovery
Des. 2000, 3, 362-369. (d) Marquis, R. W. Inhibition of cysteine
proteases. Annu. Rep. Med. Chem. 2000, 35, 309-320.
(11) Pointdexter, G. S.; Owens, D. A.; Dolen, P. L.; Woo, E. The use
of 2-oxazolidinones as latent aziridine equivalents. 2. Amino-
ethylation of aromatic amines, phenols, and thiophenols. J . Org.
Chem. 1992, 57, 6257-6265.
Su p p or tin g In for m a tion Ava ila ble: Description of the
inhibition assays, details of kinetics and NMR experiments,
and characterization (1H NMR and HRMS) of compounds 1a -
g, 4a -h , a n d 4g(13C). This material is available free of charge
Refer en ces
(1) Inaoka, T.; Bilbe, G.; Ishibashi, O.; Tezuka, K.; Kumegawa, M.;
Kokubo, T. Molecular cloning of human c-DNA for cathepsin K:
novel cysteine protease predominantely expressed in bone.
Biochem. Biophys. Res. Commun. 1995, 206, 89-96.
(2) Drake, F. H.; Dodds, R. A.; J ames, I. E.; Connor, J . R.; Debouck,
C.; Richardson, S.; Lee-Rykaczewski, E.; Coleman, L.; Rieman,
D.; Bathlow, R.; Hastings, G.; Gowen, M. Cathepsin K, but not
cathepsins B, L, or
S is abundantly expressed in human
osteoclasts. J . Biol. Chem. 1996, 271, 12511-12516.
(3) Garnero, P.; Borel, O.; Byrjalsen, I.; Ferreras, M.; Drake, F. H.;
McQueney, M. S.; Foged, N. T.; Delmas, P. D.; Delaisse, J .-M.
The collagenolytic activity of cathepsin K is unique among
mammalian proteinases. J . Biol. Chem. 1998, 273, 32347-
32352.
(4) Bossard, M. J .; Tomaszek, T. A.; Thompson, S. K.; Amegadzie,
B. Y.; Hanning, C. R.; J ones, C.; Kurdyla, J . T.; McNulty, D. E.;
Drake, F. H.; Gowen, M.; Levy, M. A. Proteolytic activity of
J M010801S