Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
aryl-migration was proved by the reaction of 24 (prepared
separately) to give the product 5aa in 92% yield (Scheme 6). The
presence of ortho-substituents directs the electrophilic
substitution at para position. This prevents cyclization, giving
the 3,3-bis-arylacetates 5x-z as there is no ortho-hydroxyl group
for lactonization.
DOI: 10.1039/C8CC09785B
McQuaid, J. Z. Long, D. Sames, Org. Lett., 2009, 14, 2972; (d) P. A.
Vadola, I. Carrera, D. Sames, J. Org. Chem., 2012, 77, 6689.
(5) CCDC 1873459 (5a) and 1873458 (5bx) contains the
supplementary crystallographic data.
(6) For recent synthesis of 4-aryldihydrocoumarins see: (a) J.
Oyamada, Kitamura, T. Tetrahedron 2006, 62, 6918; (b) J. C. Allen,
G. Kociok-Köhn, C. G. Frost, Org. Biomol. Chem., 2012, 10, 32; (c)
I. Ibrahem, G. Ma, S. Afewerki, A. Córdova, Angew. Chem., Int. Ed.,
2013, 52, 878; (d) L. Caruana, M. Mondatori, V. Corti, S. Morales,
A. Mazzanti, M. Fochi, L. Bernardi, Chem. Eur. J., 2015, 21, 6037;
(e) G. Yue, K. Lei, H. Hirao, J. S. Zhou, Angew. Chem., Int. Ed., 2015,
54, 6531; (f) G. -T. Li, Z. -K. Li, Q. Gu, S.-L. You, Org. Lett., 2017, 19,
1318.
+
BF3.OEt2
O
OEt
O
OEt
OBF3
R
R
O
3
18
+ O
F3B
R
BF3
O
H
O
+
OEt
OEt
+
R
-H+
O
20
19
3'
(7) For 4-aryldihydrocoumarin natural products see: (a) F. Asai, M.
Iinuma, T. Tanaka, M. Mizuno, Phytochemistry, 1991, 30, 3091;
(b) F. Asai, M. Iinuma, T. Tanaka, M. Mizuno, Heterocycles, 1992,
33, 229; (c) M. Iinuma, T. Tanaka, M. Takenaka, M. Mizuno, F.
Asai, Phytochemistry, 1992, 31, 2487; (d) B. T. Ngadjui, G. W. F.
Kapche, H. Tamboue, B. M. Abegaz, J. D. Connolly,
Phytochemistry, 1999, 51, 119; (e) X. Sun, A. T. Sneden, Planta
Med., 1999, 65, 671; (f) X. M. Li, M. Lin, Y. H. Wang, X. Liu, Planta
Med., 2004, 70, 160.
(8) For bioactivities of 4-aryldihydrocoumarins see: (a) Q. Xiong,
W. Fan, Y. Tezuka, I. K. Adnyana, P. Stampoulis, M. Hattori, T.
Namba, S. Kadota, Planta Med., 2000, 66, 127; (b) N. Tabanca, R.
S. Pawar, D. Ferreira, J. P. Marais, S. I. Khan, V. Joshi, I. A. Khan,
Planta Med., 2007, 73, 1107; (c) K. V. Sashidhara, S. P. Singh, S. V.
Singh, R. K. Srivastava, K. Srivastava, J. K. Saxena, S. K. Puri, Eur. J.
Med. Chem., 2013, 60, 497; (d) S. Xu, M. Y. Shang, G. X. Liu, F. Xu,
X. Wang, C. C. Shou, S. Q. Cai, Molecules, 2013, 18, 5265; (e) J. R.
Huh, E. E. Englund, H. Wang, R. Huang, P. Huang, F. Rastinejad, J.
Inglese, C. P. Austin, R. L. Johnson, W. Huang, D. R. Littman, ACS
Med. Chem. Lett., 2013, 4, 79.
F3B+
1
O
OEt
OH
F3B
3
O
OEt
R
O
4
2, 5
OH
R
R
O-C migration/
aromatization
OH
R
22
H+
21
O
OEt
OH
R
lactonization
-EtOH
5
OH
R
5x-z
(no cyclization,
3,3-bisaryl acetates)
3
if ortho-substituents on
23
O
O
BF3.OE2
(0.5 equiv)
O
OEt
O
DCE, 80 o
6 h, 92%
C
24
Scheme 6 Plausible mechanism.
5aa
(9) B. D. Gallahher, B. R. Taft, B. H. Lipshutz, Org. Lett., 2009, 11,
5374 and references therein.
(10) F. Song, S. Lu, J. Gunnet, J. Z. Xu, P. Wines, J. Proost, Y. Liang,
C. Baumann, J. Lenhard, W. V. Murray, K. T. Demarest, G. -H. Kuo,
J. Med. Chem. 2007, 50, 2807.
In summary, we have developed a beguiling annulative
partial dimerization/rearrangement of 3-aryloxyacrylates under
Lewis-acid
conditions
to
4-arylchroman-2-ones
(4-
aryldihydrocoumarins), which are important structural motifs in
many natural products. The reaction occurs through C3-O
aryloxy bond cleavage, electrophilic aromatic substitution, O-C
aryl-migration and lactonization. This method is important, as
addition of a phenol to alkyl/aryl propiolate delivers 3 and in
one step would further provide 4-arylchroman-2-ones 5.
We thank SERB New Delhi (EMR/2017/000499) for financial
support. R.A.K. thanks UGC, India for a research fellowship.
(11) C. F. Burant, Diabetes Care, 2013, 36, S175.
(12) For selected synthesis of tolterodine see: (a) G. Chen, N.
Tokunga, T. Hayashi, Org. Lett., 2005, 7, 2285; (b) F. Ulgheri, M.
Marchetti, O. Piccolo, J. Org. Chem., 2007, 72, 6056; (c) S. Soergel,
N. Tokunga, K. Sasaki, K. Okamoto, T. Hayashi, Org. Lett., 2008,
10, 589; (d) K. Yoo, H. Kim, J. Yun, J. Org. Chem., 2009, 74, 4232.
(13) (a) P. V. Kerrebroeck, K. Kreder, U. Jonas, N. Zinner, A. Wein,
Urology, 2001, 57, 414; (b) D. J. Sellers, T. Yamanishi, C.
R. Chapple, C. Couldwell, K. Yasuda, R. Chess-Williams, J. Auton
Pharmacol., 2000, 20, 171.
Conflicts of interest
There are no conflicts of interest to declare.
(14) (a) T. Hirose, R. J. Smith, A. M. Jetten, Biochem. Biophy. Res.
Commun., 1994, 205, 1976; (b) U. Guendisch, J. Weiss, F. Ecoeur, J.
C. Riker, K. Kaupmann, J. Kallen, S. Hintermann, D. Orain, J. Dawson,
A. Billich, C. Guntermann, PLoS One 2017, 12, e0188391.
Notes and references
(1) (a) C. M. Rojas, Molecular Rearrangements in Organic
Synthesis, 2016, 1st Edn., John Wiley and Sons. (b) S. Moulay,
Chem. Edu. Res. Prac., 2002, 3, 33.
(2) (a) A. S. Kende, Pure & Appl. Chem., 1997, 69, 407; (b) J. Marco-
Contelles, E. Soriano, Rearrangements in Natural Product
Synthesis. In Modern Tools for the Synthesis of Complex Bioactive
Molecules. J. Cossy, S. Arseniyadis, Eds.; Wiley: Hoboken, NJ,
2012; pp 243–269.
(3) (a) R. S. Atkinson, R. H. Green, J. Chem. Soc., Perkin Trans. 1,
1974, 394. (b) W. H. N. Nijhuis, W. Verboom, D. N. Reinhoudt, J.
Am. Chem. Soc., 1987, 109, 3136. (c) M. Noguchi, H. Yamada, T.
A. Sunagawa, J. Chem. Soc., Perkin Trans. 1, 1998, 3327.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins