Communication
ChemComm
Tetrahedron, 2001, 57, 1671; (c) M. C. de Souza, W. P. de Macedo, M. C. M.
da Silva, G. C. de, O. Ramos and H. G. Alt, Phosphorus, Sulfur Silicon Relat.
Elem., 2004, 179, 1047; (d) S. Cunha and M. T. Rodrigues, Tetrahedron Lett.,
ˆ
´
2006, 47, 6955; (e) H. Esteves, A. de Fatima, R. de P. Castro, J. R. Sabino,
F. Macedo, Jr. and T. O. Brito, Tetrahedron Lett., 2015, 56, 6872.
4 Selected examples: (a) T.-G. Ong, G. P. A. Yap and D. S. Richeson, J. Am.
Chem. Soc., 2003, 125, 8100; (b) F. Montilla, A. Pastor and A. Galindo,
J. Organomet. Chem., 2004, 689, 993; (c) W.-X. Zhang, M. Nishiura and
Z. Hou, Synlett, 2006, 1213; (d) H. Shen, H.-S. Chan and Z. Xie, Organo-
metallics, 2006, 25, 5515; (e) T.-G. Ong, J. S. O’Brien, I. Korobkov and D. S.
Richeson, Organometallics, 2006, 25, 4728; ( f ) Q. Li, S. Wang, S. Zhou,
G. Yang, X. Zhu and Y. Liu, J. Org. Chem., 2007, 72, 6763; (g) W.-X. Zhang,
M. Nishiura and Z. Hou, Chem. – Eur. J., 2007, 13, 4037; (h) W.-X. Zhang,
D. Li, Z. Wang and Z. Xi, Organometallics, 2009, 28, 882; (i) X. Zhu, Z. Du,
F. Xu and Q. Shen, J. Org. Chem., 2009, 74, 6347; ( j) C. Alonso-
Scheme 4 Synthesis of 4a from the isolated carbodiimide.
´
´
Moreno, F. Carrillo-Hermosilla, A. Garces, A. Otero, I. Lopez-Solera,
´
˜
A. M. Rodrıguez and A. Antinolo, Organometallics, 2010, 29, 2789;
(k) R. E. Looper, T. J. Haussener and J. B. C. Mack, J. Org. Chem.,
2011, 76, 6967; (l) S. Pottabathula and B. Royo, Tetrahedron Lett.,
ˇ
2012, 53, 5156; (m) D. Tan, C. Mottillo, A. D. Katsenis, V. Strukil and
ˇˇ ´
T. Friscic, Angew. Chem., Int. Ed., 2014, 53, 9321; (n) L. Xu, W.-X.
Zhang and Z. Xi, Organometallics, 2015, 34, 1787.
Scheme 5 Synthetic utility of acyclic guanidine.
5 Synthesis of carbodiimide: for a review: (a) A. Williams and I. T. Ibrahim,
Chem. Rev., 1981, 81, 589; representative examples: (b) C. L. Stevens,
C. H. Singhal and A. B. Ash, J. Org. Chem., 1967, 32, 2895; (c) T. Saegusa,
Y. Ito and T. Shimizu, J. Org. Chem., 1970, 35, 3995; (d) F. Palacios,
C. Alonso, D. Aparicio, G. Rubiales and J. M. de los Santos, Tetrahedron,
structural motif in both synthetic and natural bioactive compounds
of medicinal relevance.13 We have also synthesized a seven-
membered cyclic guanidine (10, Scheme 5) through a diallylation
and ring metathesis sequence from 4l to generate a 1,3-diazepine
derivative. The structure of 10 was further confirmed by hydrolyzing
it to a known compound (pl. see ESI†).14
In summary, we have developed a catalyst-free protocol for the
synthesis of sulfonyl guanidines by treating N,N-dibromoarylsulfon-
amides with isonitrile and amine in the presence of a base. The
reaction works very fast at room temperature to produce the
corresponding guanidine within a short time. Chemoselectivity of
the procedure has been demonstrated by using substrates having
functionalities like hydroxyl, alkene and alkyne to afford the desired
sulfonyl guanidines. The synthesis and isolation of the carbodiimide
intermediate under mild and catalyst-free conditions are remarkable
achievements of the present method. Guanidine products were
successfully transformed to core structures of biologically active
molecules.
¨
2007, 63, 523; (e) R. E. Cowley, N. A. Eckert, J. Elhaık and P. L. Holland,
Chem. Commun., 2009, 1760; ( f ) N. P. Mankad, P. Mu¨ller and
J. C. Peters, J. Am. Chem. Soc., 2010, 132, 4083; (g) J. J. Scepaniak, R. P.
Bontchev, D. L. Johnson and J. M. Smith, Angew. Chem., Int. Ed., 2011,
50, 6630; (h) R. E. Cowley, M. R. Golder, N. A. Eckert, M. H. Al-Afyouni
and P. L. Holland, Organometallics, 2013, 32, 5289; (i) E. Kogut, H. L.
Wiencko, L. Zhang, D. E. Cordeau and T. H. Warren, J. Am. Chem. Soc.,
2005, 127, 11248; ( j) C. A. Laskowski and G. L. Hillhouse, Organo-
metallics, 2009, 28, 6114; (k) Y. M. Badiei, A. Krishnaswamy, M. M.
Melzer and T. H. Warren, J. Am. Chem. Soc., 2006, 128, 15056; (l) K. Shin,
Y. Baek and S. Chang, Angew. Chem., Int. Ed., 2013, 52, 8031.
6 L. Zhou, J. Chen, J. Zhou and Y.-Y. Yeung, Org. Lett., 2011, 13, 5804.
7 (a) L. Zhou, J. Zhou, C. K. Tan, J. Chen and Y.-Y. Yeung, Org. Lett.,
2011, 13, 2448; (b) K. K. Rajbongshi, I. Saikia, L. D. Chanu, S. Roy
and P. Phukan, J. Org. Chem., 2016, 81, 5423.
8 (a) Z. Zhang, Z. Li, B. Fu and Z. Zhang, Chem. Commun., 2015, 51, 16312;
(b) Z.-Y. Gu, Y. Liu, F. Wang, X. Bao, S.-Y. Wang and S.-J. Ji, ACS Catal.,
2017, 7, 3893; (c) Z. Zhang, B. Huang, G. Qiao, L. Zhu, F. Xiao, F. Chen,
B. Fu and Z. Zhang, Angew. Chem., Int. Ed., 2017, 56, 4320; (d) G. Qiao,
Z. Zhang, B. Huang, L. Zhu, F. Xiao and Z. Zhang, Synthesis, 2018, 330.
9 T.-H. Zhu, S.-Y. Wang, T.-Qi. Wei and S.-J. Ji, Adv. Synth. Catal., 2015,
357, 823.
Financial support from SERB, India (Grant No. EMR/2016/
007883) is gratefully acknowledged. We thank SAIF, GU and
Dr Ranjit Thakuria for providing single crystal X-ray data and
analysis. DH thanks UGC, India for the BSR fellowship.
10 (a) J. Li and L. Neuville, Org. Lett., 2013, 15, 6124; (b) K. Tsubokura,
T. Iwata, M. Taichi, A. Kurbangalieva, K. Fukase, Y. Nakao and
K. Tanaka, Synlett, 2014, 1302; (c) J. Li, H. Wang, Y. Hou, W. Yu,
S. Xu and Y. Zhang, Eur. J. Org. Chem., 2016, 2388.
11 (a) I. Saikia, A. J. Borah and P. Phukan, Chem. Rev., 2016, 116, 6837;
(b) K. K. Rajbongshi, A. J. Borah and P. Phukan, Synlett, 2016, 1618.
12 Selected examples: (a) I. Saikia, B. Kashyap and P. Phukan, Chem.
Commun., 2011, 47, 2967; (b) A. J. Borah and P. Phukan, Chem. Commun.,
2012, 48, 5491; (c) P. Phukan, P. Chakraborty and D. Kataki, J. Org.
Chem., 2006, 71, 7533; (d) I. Saikia, P. Chakraborty, M. J. Sarma,
M. Goswami and P. Phukan, Synth. Commun., 2015, 45, 211; (e) K. K.
Rajbongshi, D. Hazarika and P. Phukan, Tetrahedron, 2016, 72, 4151;
( f ) D. Hazarika and P. Phukan, Tetrahedron, 2017, 73, 1374; (g) K. K.
Rajbongshi, D. Hazarika and P. Phukan, Tetrahedron Lett., 2015, 56, 356;
(h) D. C. Loukrakpam and P. Phukan, Tetrahedron Lett., 2017, 58, 4855;
(i) D. Hazarika and P. Phukan, Tetrahedron Lett., 2018, 59, 4593.
13 (a) J. P. Wolfe, Eur. J. Org. Chem., 2007, 571; (b) M. J. Gainer, N. R. Bennett,
Y. Takahashi and R. E. Looper, Angew. Chem., Int. Ed., 2011, 50, 684;
(c) B. A. Hopkins and J. P. Wolfe, Angew. Chem., Int. Ed., 2012, 51, 9886;
(d) K. Shen and Q. Wang, Chem. Sci., 2017, 8, 8265; (e) M. Nagamoto,
T. Nishimura and H. Yorimitsu, Synthesis, 2017, 4272; ( f ) F. Xu,
S. A. Shuler and D. A. Watson, Angew. Chem., Int. Ed., 2018, 57, 12081.
14 E. Kanno, K. Yamanoi, S. Koya, I. Azumaya, H. Masu, R. Yamasaki
and S. Saito, J. Org. Chem., 2012, 77, 2142.
Conflicts of interest
There are no conflicts to declare.
Notes and references
1 (a) R. G. S. Berlinck, A. C. B. Burtoloso and M. H. Kossuga, Nat. Prod. Rep.,
2008, 25, 919; (b) A. F. Pozharskii, A. T. Soldatenkov and A. R. Katritzky,
Heterocycles in Life and Society: An Introduction to Heterocyclic Chemistry,
Biochemistry and Applications, Wiley, 2nd edn, 2011; (c) D. Castagnolo,
S. Schenone and M. Botta, Chem. Rev., 2011, 111, 5247.
2 (a) J. C. Manimala and E. V. Anslyn, Eur. J. Org. Chem., 2002, 3909;
(b) A. R. Katritzky and B. V. Rogovoy, ARKIVOC, 2005, 49; (c) C. Alonso-
˜
Moreno, A. Antinolo, F. Carrillo-Hermosilla and A. Otero, Chem. Soc.
Rev., 2014, 43, 3406; (d) W.-X. Zhang, L. Xu and Z. Xi, Chem. Commun.,
2015, 51, 254.
3 Selected examples: (a) J. Zhang and Y. Shi, Tetrahedron Lett., 2000, 41, 8075;
(b) S. Cunha, M. B. Costa, H. B. Napolitano, C. Lariucci and I. Vencato,
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2019