10.1002/chem.201904223
Chemistry - A European Journal
COMMUNICATION
[7]
For selected publications, see: a) S.-S. Zhang, J.-Q. Wu, X. Liu, H. Wang,
ACS Catal. 2014, 5, 210-214; b) S. Sharma, Y. Shin, N. K. Mishra, J.
Park, S. Han, T. Jeong, Y. Oh, Y. Lee, M. Choi, I. S. Kim, Tetrahedron
2015, 71, 2435-2441; c) S. Sharma, S. H. Han, Y. Oh, N. K. Mishra, S.
Han, J. H. Kwak, S.-Y. Lee, Y. H. Jung, I. S. Kim, J. Org. Chem. 2016,
81, 2243-2251; d) X. Jiang, J. Chen, W. Zhu, K. Cheng, Y. Liu, W.-K. Su
and C. Yu, J. Org. Chem. 2017, 82, 10665-10672; e) Q. Lu, F. J. R.
Klauck, F. Glorius, Chem. Sci. 2017, 8, 3379-3383; f) H. Wang, M. M.
Lorion, L. Ackermann, Angew. Chem. Int. Ed. 2017, 56, 6339-6342; g) H.
Wang, M. M. Lorion, L. Ackermann, ACS Catal. 2017, 7, 3430-3433.
a) B. M. Trost, J. R. Granja, Tetrahedron Lett. 1991, 32, 2193-2196; b)
R. Mizojiri, Y. Kobayashi, J. Chem. Soc., Perkin Trans. 1 1995, 2073-
2075.
serve as key intermediates in natural product and fine chemical
synthesis.
Acknowledgements
We thank the Cerca program/Generalitat de Catalunya, ICREA,
MINECO (CTQ2017-88920-P), and AGAUR (2017-SGR-232) for
support. C.B. thanks the Erasmus+ fellowship program. E.C.
Escudero-Adán and M. Martínez Belmonte are acknowledged for
the X-ray analyses.
[8]
[9]
a) J. E. Gómez, W. Guo, A. W. Kleij, Org. Lett. 2016, 18, 6042-6045; b)
W. Guo, L. Martínez-Rodríguez, E. Martin, E. C. Escudero-Adán, A. W.
Kleij, Angew. Chem. Int. Ed. 2016, 55, 11037-11040; c) N. Miralles, J. E.
Gómez, A. W. Kleij, E. Fernández, Org. Lett. 2017, 19, 6096-6099; d) J.
Xie, W. Guo, A. Cai, E. C. Escudero-Adán and A. W. Kleij, Org. Lett.
2017, 19, 6388-6391. Also see refs. 6b, 6c and 6h.
Keywords: alkaloids • indolizidine • palladium • quinolizidine •
vinyl cyclic carbonate
[1]
[2]
P. G. M. Wuts, T. W. Greene in Greene's Protective Groups in Organic
Synthesis, Fourth Edition, Wiley-Interscience, Hoboken, N.J., 2007, pp.
361-363.
[10] À. Cristòfol, E. C. Escudero-Adán, A. W. Kleij, J. Org. Chem. 2018, 83,
9978-9990.
a) W. M. Pankau, W. Kreiser, Helv. Chim. Acta 1998, 81, 1997-2004; b)
D. Crich, A. U. Vinod, J. Picione, J. Org. Chem. 2003, 68, 8453-8458; c)
Z. Li, Carbohydr. Res. 2010, 345, 1952-1957; d) P. K. Kancharla, C.
Navuluri, D. Crich, Angew. Chem. Int. Ed. 2012, 51, 11105-11109; e) P.
Wisse, M. A. R. de Geus, G. Cross, A. M. C. H. van den Nieuwendijk, E.
J. van Rooden, R. J. B. H. N. van den Berg, J. M. F. G. Aerts, G. A. van
der Marel, J. D. C. Codée, H. S. Overkleeft, J. Org. Chem. 2015, 80,
7258-7265; f) L. Panza, F. Compostella, D. Imperio, Carbohydr. Res.
2019, 472, 50-57.
[11] J. P. Michael, Nat. Prod. Rep. 2008, 25, 139-165; b) J. P. Michael, The
Alkaloids: Chemistry and Biology 2016, 75, 1-498.
[12] a) R. Huang, Z. Li, Z. Jin, Synthesis 2004, 2001; b) S. Chemler, Curr.
Bioact. Compd. 2009, 5, 2-19; c) M. Fatima Pereira, C. Rochais and P.
Dallemagne, Anti-Cancer Agents Med. Chem. 2015, 15, 1080-1091.
[13] For selected publications, see: a) S. J. Danishefsky, C. Vogel, J. Org.
Chem. 1986, 51, 3915-3916; b) M. A. Ciufolini, F. Roschangar, J. Am.
Chem. Soc. 1996, 118, 12082-12089; c) A. Fürstner, J. W. J. Kennedy,
Chem. Eur. J. 2006, 12, 7398-7410; d) M. J. Niphakis, G. I. Georg, J. Org.
Chem. 2010, 75, 6019-6022; e) S. Hanessian, A. K. Chattopadhyay, Org.
Lett. 2013, 16, 232-235; f) J. Chea, D. L. J. Clive, J. Org. Chem. 2015,
80, 10294-10298; g) C.-F. Chang, C.-F. Li, C.-C. Tsai, T.-H. Chuang, Org.
Lett. 2016, 18, 638-641; h) G.-Q. Liu, M. Reimann, T. Opatz, J. Org.
Chem. 2016, 81, 6142-6148; i) A. Lerchen, T. Knecht, M. Koy, C. G.
Daniliuc, F. Glorius, Chem. Eur. J. 2017, 23, 12149-12152; j) Y.-I. Jo, M.
D. Burke, C.-H. Cheon, Org. Lett. 2019, 21, 4201-4204.
[3]
a) P. T. O'Sullivan, W. Buhr, M. A. M. Fuhry, J. R. Harrison, J. E. Davies,
N. Feeder, D. R. Marshall, J. W. Burton, A. B. Holmes, J. Am. Chem. Soc.
2004, 126, 2194-2207; b) B. M. Trost, A. Aponick, J. Am. Chem. Soc.
2006, 128, 3931-3933; c) J. D. White, C. M. Lincoln, J. Yang, W. H. C.
Martin, D. B. Chan, J. Org. Chem. 2008, 73, 4139-4150; d) U. Koert, J.
Schwaben, J. Cordes, K. Harms, Synthesis 2011, 2011, 2929-2934; e)
A. Kumari, S. P. Gholap, R. A. Fernandes, Chem. Asian J. 2019, 14,
2278-2290; f) W. Guo, V. Laserna, J. Rintjema, A. W. Kleij, Adv. Synth.
Catal. 2016, 358, 1602-1607.
[14] Recently, SO2F2 was used for the intermolecular 1,1-
dihydrofluoroalkylation of amines. M. Epifanov, P. J. Foth, F. Gu, C.
Barrillon, S. S. Kanani, C. S. Higman, J. E. Hein, G. M. Sammis, J. Am.
Chem. Soc. 2018, 140, 16464-16468.
[4]
[5]
[6]
For selected reviews, see: a) M. M. Heravi, V. Zadsirjan, Tetrahedron:
Asymmetry 2013, 24, 1149-1188; b) V. Zadsirjan, M. M. Heravi, Curr.
Org. Synth. 2018, 15, 3-20.
[15] For details see CCDC-1951370.
a) Y. Zhang, A. Khan, Synlett 2015, 26, 853-860; b) W. Guo, J. E. Gómez,
À. Cristòfol, J. Xie, A. W. Kleij, Angew. Chem. Int. Ed. 2018, 57, 13735-
13747.
[16] For ipalbidine, see refs. 13a and 13f. For cryptoleurine and tylophorine,
see refs. 13g and 13i. For antofine, see ref. 13g.
[17] We believe that the failure in using standard DEAD and PPh3 lies in the
low basicity of the anion of the hydrazine dicarboxylate intermediate to
deprotonate the lactam NH proton, which acted as a nucleophile instead.
Therefore, we switched to diamide reagents whose hydrazine
dicarboxamide intermediates should be more basic to deprotonate the
lactam NH proton, and thus, partially suppress the nucleophilic attack of
the hydrazine dicarboxamide intermediate. In a similar way, this is in
accordance with the results reported by Roush and coworkers: C. Allais,
W. R. Roush, Org. Lett. 2017, 19, 2646-2649.
For selected publications, see: a) A. Khan, L. Yang, J. Xu, L. Y. Jin, Y. J.
Zhang, Angew. Chem. Int. Ed. 2014, 53, 11257-11260; b) A. Cai, W. Guo,
L. Martínez-Rodríguez, A. W. Kleij, J. Am. Chem. Soc. 2016, 138, 14194-
14197; c) W. Guo, L. Martínez-Rodríguez, R. Kuniyil, E. Martin, E. C.
Escudero-Adán, F. Maseras, A. W. Kleij, J. Am. Chem. Soc. 2016, 138,
11970-11978; d) A. Khan, S. Khan, I. Khan, C. Zhao, Y. Mao, Y. Chen,
Y. J. Zhang, J. Am. Chem. Soc. 2017, 139, 10733-10741; e) Z.-Q. Rong,
L.-C. Yang, S. Liu, Z. Yu, Y.-N. Wang, Z. Y. Tan, R.-Z. Huang, Y. Lan, Y.
Zhao, J. Am. Chem. Soc. 2017, 139, 15304-15307; f) L.-C. Yang, Z.-Q.
Rong, Y.-N. Wang, Z. Y. Tan, M. Wang, Y. Zhao, Angew. Chem. Int. Ed.
2017, 56, 2927-2931; g) P. Das, S. Gondo, P. Nagender, H. Uno, E.
Tokunaga, N. Shibata, Chem. Sci. 2018, 9, 3276-3281; h) W. Guo, R.
Kuniyil, J. E. Gómez, F. Maseras, A. W. Kleij, J. Am. Chem. Soc. 2018,
140, 3981-3987; i) S. Singha, T. Patra, C. G. Daniliuc, F. Glorius, J. Am.
Chem. Soc. 2018, 140, 3551-3554; j) Y. Wei, S. Liu, M.-M. Li, Y. Li, Y.
Lan, L.-Q. Lu, W.-J. Xiao, J. Am. Chem. Soc. 2018, 141, 133-137; k) C.
Yuan, Y. Wu, D. Wang, Z. Zhang, C. Wang, L. Zhou, C. Zhang, B. Song,
H. Guo, Adv. Synth. Catal. 2018, 360, 652-658. l) R. Zeng, J.-L. Li, X.
Zhang, Y.-Q. Liu, Z.-Q. Jia, H.-J. Leng, Q.-Q. Huang, Y. Liu, Q.-Z. Li,
ACS Catal. 2019, 9, 8256-8262.
[18] For details see CCDC-1951371.
[19] K.-J. Xiao, J.-M. Luo, X.-E. Xia, Y. Wang, P.-Q. Huang, Chem. Eur. J.
2013, 19, 13075-13086.
[20] A preliminary test using the biphosphine ligand (S)-(−)-7,7´-bis[di(4-
methylphenyl)phosphino]-2,2´,3,3´-tetrahydro-1,1´-spirobiinde-ne gave
chiral 5a in 73% ee though at low (< 5%) conversion.
This article is protected by copyright. All rights reserved.