5 B. O. Dabbousi, M. G. Bawendi, O. Onitsuka and M. F. Rubner, Appl.
Phys. Lett., 1995, 66, 1316.
6 A. P. Alivisatos, X. Peng, T. E. Wilson, K. P. Johnsson, C. J. Loweth,
M. P. Bruchez, Jr. and P. G. Schultz, Nature, 1996, 382, 609.
7 S. Strite and H. Morkoc, J. Vac. Sci. Technol. B, 1992, 10, 1237.
8 S. V. Ivanov, A. A. Toropov, S. V. Sorokin, T. V. Shubina, I. V. Sedova,
P. S. Kop’ev, Z. I. Alferov, A. Waag, H. J. Lugauer, G. Reuscher, M.
Keim, F. F. Fischer and G. Landwehr, Semiconductors, 1999, 33,
1016.
9 A. C. Frank, F. Stowasser, C. R. Miskys, O. Ambacher and R. A.
Fischer, J. Am. Chem. Soc., 1998, 120, 3512.
10 (a) N. Revaprasadu, M. A. Malik, P. O’Brien, M. M. Zulu and M.
Wakefield, J. Mater. Chem., 1998, 8, 1885; (b) B. Ludolph, M. A.
Malik, P. O’Brien and N. Revaprasadu, Chem. Commun., 1998, 1849;
(c) M. A. Hines and P. Guyot-Sionnest, J. Phys. Chem., 1998, 102,
3655.
11 C. G. Wu and T. Bein, Science, 1994, 264, 1757; L. Z. Wang, J. L. Shi,
W. H. Zhang, M. L. Ruan, J. Yu and D. S. Yan, Chem. Mater., 1999, 11,
3015.
Fig. 2 Optical spectra and size distribution of ZnSe QDs grown at (a) 385
(b) 367 (c) 340 (d) 320 °C. (A) UV–VIS absorption spectra, (B)
photoluminescence spectra and (C) size distribution.
12 Zn(SePh)2 was prepared according to a modification of literature
procedure (M. Bochmann, G. Bwembya and K. J. Webb, Inorg. Synth.,
1997, 31, 19). Selenophenol (2.14 g, 13.54 mmol) was slowly added to
Zn[N(SiMe3)2]2 (2.61 g, 6.76 mmol) in toluene (50 ml) for 30 min. A
white precipitate began to form and the mixture was stirred at room
temp. for 12 h, after which heptane (10 ml) was added. The precipitate
was collected by filtration, washed with heptane (5 ml), and dried in
vacuo, to give a white powder (2.32 g, 90%).
13 TMEDA (1.07 g, 9.17 mmol) was added to a suspension of Zn(SePh)2
(1.81 g, 6.11 mmol) in toluene (50 ml). The mixture was stirred for 24
h to give a pale yellow solution, which was filtered, treated with pyridine
(5 ml) and heptane (30 ml), and cooled to 224 °C to give colorless
crystals (1.765 g, 59%), mp 137–138 °C. Anal. Calc. for
C
18H26N2Se2Zn: C, 43.8; H, 5.27; N, 5.67. Found: C, 43.1; H, 5.34; N,
5.37%. H(CDCl3, 25 °C): 7.90 (t, 2H, JHH 7 Hz, o-CH), 6.86 (m, 3H,
m-CH and p-CH), 2.67 (s, 2H, NCH2), 2.48 (s, 6H, NMe2).
14 An X-ray crystallographic study of Zn(SePh)2(TMEDA) (Fig. 1) shows
that the zinc center adopts a distorted tetrahedral geometry with a large
Se–Zn–Se angle of 125.55° and a small N–Zn–N angle of 86.33°. The
Zn–Se and Zn–N bond lengths are 2.398 and 2.134 Å, respectively. The
bond lengths and angles are similar to those seen for other zinc
complexes with organochalcogen and amine ligands.15 Crystal data:
C22H16N2Se2Zn, Mr = 531.69, monoclinic, space group P21/c, a =
11.202(2), b = 12.7326(14), c = 15.125(3) Å, = 107.050(18)°, U =
2062.5(6) Å3, Z = 4, Dc = 1.340 g cm23, F(000) = 1040, (Mo-Ka)
= 47.2 cm21, R1 = 0.0623, wR2 = 0.1634. CCDC 182/1665. See
in .cif format.
15 M. Bochmann, G. C. Bwembya, R. Grinter, A. K. Powell, K. J. Webb,
M. B. Hursthouse, K. M. Abdul Malik and M. A. Mazid, Inorg. Chem.,
1994, 33, 2290; N. Ueyama, T. Sufawara, K. Sasaki, A. Nakamura, S.
Yamashita, Y. Wakatsuki, H. Yamazaki and N. Yasuoka, Inorg. Chem.,
1988, 27, 741; G. Mugesh, H. B. Singh, R. P. Patel and R. J. Butcher,
Inorg. Chem.,1998, 37, 2263.
16 Molecular precursor strategies with chalcogenolate ligands have been
similarly used to prepare other II/VI semiconducting materials. See: (a)
J. G. Brennan, T. Siegrist, P. J. Carrol, S. M. Stuczynski, L. E. Brus and
M. L. Steigerwald, J. Am. Chem. Soc., 1989, 111, 4141; (b) J. G.
Brennan, T. Siegrist, P. J. Carrol, S. M. Stuczynski, P. Reynders, L. E.
Brus and M. L. Steigerwald, Chem. Mater., 1990, 2, 403; (c) K. Osakada
and T. Yamamoto, J. Chem. Soc., Chem. Commun., 1987, 1117.
17 Upon themolysis of Zn(SePh)2(TMEDA), the generation of Ph2Se was
identified by 1H NMR spectroscopy.
Fig. 3 HRTEM images of ZnSe QDs grown at 340 °C.
synthesis from an air-stable monomeric molecular precursor.
The growth of QDs follows a simple ligand elimination reaction
and by varying the growth temperature it is possible to control
their size. The results constitute a good demonstration of
controlling the size of semiconductor QDs with band gaps in the
blue region of the electromagnetic spectrum. We believe that
this strategy can be extended to facile size controlled synthesis
of QDs of other materials that, at present, are difficult or
complicated to prepare.
This work was supported by the KOSEF (1999-1-122-001-5)
and we thank KBSI and KRISS for the TEM analyses.
Notes and references
1 C. D. Murray, D. J. Norris and M. G. Bawendi, J. Am. Chem. Soc., 1993,
115, 8706.
2 J. E. Bowen Katari, V. L. Colvin and A. P. Alivisatos, J. Phys. Chem.,
1994, 98, 411.
3 (a) N. Chestnoy, R. Hull and L. E. Brus, J. Chem. Phys., 1986, 85, 2237;
(b) M. L. Steigerwald and L. E Brus, Acc. Chem. Res., 1990, 23, 183.
4 A. L. Rogach, A. Kornowski, M. Gao, A. Eychmüller and H. J. Weller,
J. Phys. Chem. B, 1999, 103, 3065.
18 X-Ray diffraction spectra show three broad peaks at 2 = 27.41 (111),
48.04 (200) and 68.76° (311), similar to the cubic phase observed in
CdSe.4 Interestingly, the synthesis of hexagonal ZnSe QDs has
previously been reported.10a
1244
Chem. Commun., 2000, 1243–1244