butane VI, which would then be converted into ruthenium-
carbene complex VII. This would react with ethylene
intermolecularly to afford triene II. On the other hand, if
complex VII can react with an alkene part of the diene
moiety intramolecularly, bicyclic compound III would be
obtained.
Scheme 1. Plan for ROM-RCM of Cycloalkene-yne
When a CH2Cl2 solution of cyclohexene-yne 2a and 10
mol % first-generation ruthenium carbene complex 1a5a was
stirred at room temperature for 18 h under an atmosphere of
ethylene, cross enyne metathesis2g product 3a was obtained
in 76% yield instead of the ring-opening metathesis product
(Scheme 2). Presumably, carbene complex VIII cannot react
with the cyclohexene moiety.
Scheme 2. Reaction of Cycloalkene-yne 2a Using 1a
molecular diene metathesis of II occurs, bicyclic compound
III would be formed. That is, the alkyne part of I would
react with the ruthenium-carbene complex to give ruthena-
cyclobutene IV, which would be converted into ruthenium-
carbene complex V by ring opening.7 Then, intramolecular
[2 + 2] cycloaddition would occur to afford ruthenacyclo-
On the other hand, when a toluene solution of 2a and 10
mol % second-generation ruthenium carbene complex 1b5b-e
was stirred at 80 °C for 16 h under an atmosphere of
ethylene, two ring-opening metathesis products were obtained
(Scheme 3). Surprisingly, 1H NMR and mass spectra revealed
that one is compound 4b having a 5,7-fused ring system,
not a 5,8-fused ring system, obtained in 46% yield. The
structure was confirmed by X-ray crystallographic analysis8
(Figure 1).
(4) For a review on cycloisomerization of enynes, see: (a) Trost, B. M.;
Krische, M. J. Synlett 1998, 1. For selected other examples, see: (b) Katz,
T. J.; Sivavec, T. M. J. Am. Chem. Soc. 1985, 107, 737. (c) Trost, B. M.;
Tanoury, G. J. J. Am. Chem. Soc. 1988, 110, 1636. (d) Mori, M.; Watanuki,
S. J. Chem. Soc., Chem. Commun. 1992, 1082. (e) Watanuki, S.; Ochifuji,
N.; Mori, M. Organometallics 1994, 13, 4129. (f) Chatani, N.; Morimoto,
T.; Muto, T.; Murai, S. J. Am. Chem. Soc. 1994, 116, 6049. (g) Fu¨rstner,
A.; Szillat, H.; Stelzer, F. J. Am. Chem. Soc. 2000, 122, 6785. (h) Fu¨rstner,
A.; Stelzer, F.; Szillat, H. J. Am. Chem. Soc. 2001, 123, 11863. (i)
Ackermann, L.; Bruneau, C.; Dixneuf, P. H. Synlett, 2001, 397. (j) Semeril,
D.; Cleran, M.; Bruneau, C.; Dixneuf, P. H. AdV. Synth. Catal. 2001, 343,
184.
(5) For 1a, see: (a) Schwab, P.; France, M. B.; Ziller, J. W.; Grubbs, R.
H. Angew. Chem., Int. Ed. Engl. 1995, 34, 2039. For 1b, see: (b) Scholl,
M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953. For other
second-generation ruthenium catalysts, see: (c) Weskamp, T.; Schattenmann,
W. C.; Spiegler, M.; Herrmann, W. A. Angew. Chem., Int. Ed. 1998, 37,
2490. (d) Huang, J.; Stevens, E. D.; Nolan, S. P.; Peterson, J. L. J. Am.
Chem. Soc. 1999, 121, 2674. (e) Scholl, M.; Trnka, T. M.; Morgan, J. P.;
Grubbs, R. H. Tetrahedron Lett. 1999, 40, 2247.
The other is 16-membered ring compound 5a, which was
obtained in 4% yield (Table 1, run 1). At first, from the
1
coupling constant of Ha and Hb on a H NMR spectrum
(JHa-Hb ) 16.0 Hz), this compound was considered to be
trans-4a, and one set of peaks corresponding to trans-4a was
1
shown on H NMR and 13C NMR spectra. However, a MS
(6) For recent applications of ROM-RCM, see: (a) Zuercher, W. J.;
Hashimoto, M.; Grubbs, R. H. J. Am. Chem. Soc. 1996, 118, 6634. (b)
Chatani, N.; Furukawa, N.; Sakurai, H.; Murai, S. Organometallics 1996,
15, 901. (c) Fu¨rstner, A.; Szillat, H.; Gabor, B.; Mynott, R. J. Am. Chem.
Soc. 1998, 120, 8305. (d) Burke, S. D.; Quinn, K. J.; Chen, V. J. J. Org.
Chem. 1998, 63, 8626. (e) Adams, J. A.; Ford, J. G.; Stamatos, P. J.;
Hoveyda, A. H. J. Org. Chem. 1999, 64, 9690. (f) Voigtmann, U.; Blechert,
S. Synhesis 2000, 893. (g) Trost, B. M.; Doherty, G. A. J. Am. Chem. Soc.
2000, 122, 3801. (h) Ovaa, H.; Stragies, R.; van der Malel, G. A.; van
Boom, J. H.; Blechert, S. Chem. Commun. 2000, 1501. (i) Fu¨rstner, A.;
Szillat, H.; Stelzer, F. J. Am. Chem. Soc. 2000, 122, 6785. (j) Stragies, R.;
Blechert, S. J. Am. Chem. Soc. 2000, 122, 9584. (k) Voigtmann, U.; Blechert,
S. Org. Lett. 2000, 2, 3971 (l) Choi, T.-L.; Grubbs, R. H. Chem. Commun.
2001, 2648. (m) Ru¨ckert, A.; Eisele, D.; Blechert, S. Tetrahedron Lett. 2001,
42, 5245. (n) Banti, D.; North, M. Tetrahedron Lett. 2002, 43, 1561. (o)
Lee, C. W.; Choi, T.-L.; Grubbs, R. H. J. Am. Chem. Soc. 2002, 124, 3224.
(p) Minger, T. L.; Phillips, A. J. Tetrahedron Lett. 2002, 43, 5357 and
references therein.
spectrum of 5a (m/z 606 [M+]) indicated that it should be a
dimeric compound. Encouraged by this result, we found that
when a solution of 2a and 10 mol % 1b in CH2Cl2 was
refluxed under an atmosphere of ethylene for 24 h, the yields
were improved (run 2). Although an expected product 4a
was obtained under these reaction conditions (14% yield),
the main product was 5a (57%).9
Next, to determine whether dimeric compound 5a is
converted into fused 5,7- or 5,8-membered ring compounds
(8) Crystallographic data have been deposited with the Cambridge
Crystallographic Data Center as supplementary publication no. CCDC
193041.
(9) Reaction of 3a with 1b under Ar gas did not afford 5a or 4b, although
3a was completely consumed.
(7) If ROM-RCM proceeds from the cycloalkene part of I, a similar
reaction mechanism would be considered.
3856
Org. Lett., Vol. 4, No. 22, 2002