10.1002/chem.201806042
Chemistry - A European Journal
FULL PAPER
[23] L. A. Haines, K. Rajagopal, B. Ozbas, D. A. Salick, D. J. Pochan, J. P.
Schneider, J. Am. Chem. Soc. 2005, 127, 17025–17029.
[24] T. Muraoka, C. Y. Koh, H. Cui, S. I. Stupp, Angew. Chem. Int. Ed.
2009, 48, 5946–5949.
[25] L. Chen, G. Pont, K. Morris, G. Lotze, A. Squires, L. C. Serpell, D. J.
Adams, Chem. Commun. 2011, 47, 12071–12073.
Modular Compact Rheometer, Anton-Paar) equipped with a glass plate (P-
PTD200/GL) and CP25-2 cone plate (radius = 12.5 mm, cone angle = 2°,
sample volume = 0.16 mL). The gap between two plates were fixed at
0.106 mm during the measurements. The measurement temperature was
maintained at 20 °C. Frequency sweep measurements were carried out
[26] A. Z. Cardoso, L. L. E. Mears, B. N. Cattoz, P. C. Griffiths, R.
Schweins, D. J. Adams, Soft Matter 2016, 12, 3612–3621.
[27] J. Raeburn, A. Z. Cardoso, D. J. Adams, Chem. Soc. Rev. 2013, 42,
5143–5156.
[28] E. Mattia, S. Otto, Nat. Nanotechnol. 2015, 10, 111–119.
[29] D. M. Ryan, B. L. Nilsson, Polym. Chem. 2012, 3, 18–33.
[30] J. D. Hartgerink, E. Beniash, S. I. Stupp, Science 2001, 294, 1684–
1688.
with
a 0.2% strain amplitude. For irradiation experiments, the
measurements were carried out with a 0.5% strain amplitude and 10 Hz
frequency. The photoisomerization was induced by in situ irradiation from
beneath the glass plate using LEDs as used in UV/vis spectroscopy.
Photoswitching experiments were performed for three cycles.
[31] M. Externbrink, S. Riebe, C. Schmuck, J. Voskuhl, Soft Matter 2018,
14, 6166–6170.
[32] D. A. Stone, A. S. Tayi, J. E. Goldberger, L. C. Palmer, S. I. Stupp,
Chem. Commun. 2011, 47, 5702–5704.
[33] E. R. Draper, J. J. Walsh, T. O. McDonald, M. A. Zwijnenburg, P. J.
Cameron, A. J. Cowan, D. J. Adams, J. Mater. Chem. C 2014, 2, 5570–5575.
[34] S. Kiyonaka, K. Sada, I. Yoshimura, S. Shinkai, N. Kato, I. Hamachi,
Nat. Mater. 2004, 3, 58–64.
[35] Z. Qi, P. M. de Molina, W. Jiang, Q. Wang, K. Nowosinski, A. Schulz,
M. Gradzielski, C. A. Schalley, Chem. Sci. 2012, 3, 2073–2082.
[36] Q. Lin, T.-T. Lu, X. Zhu, T.-B. Wei, H. Li, Y.-M. Zhang, Chem. Sci.
2016, 7, 5341–5346.
Hydrazone formation. NMR spectroscopy was used to track the
hydrazone formation between cyclohexane monohydrazide (CMH) and
AAP-CHO triggered by GdL. Solutions of CMH and AAP-CHO in D2O were
prepared and mixed in a 1:1 fashion (final concentration: 500 μM). The
above solution was then transferred to a vial containing 1 mg/mL GdL and
well mixed before transferring to a NMR tube. NMR spectra were recorded
every hour for in total 12 spectra.
[37] A. Goujon, G. Mariani, T. Lang, E. Moulin, M. Rawiso, E. Buhler, N.
Giuseppone, J. Am. Chem. Soc. 2017, 139, 4923–4928.
[38] J. Chen, F. K. C. Leung, M. C. A. Stuart, T. Kajitani, T. Fukushima, E.
van der Giessen, B. L. Feringa, Nat. Chem. 2018, 10, 132–138.
[39] S. Yagai, A. Kitamura, Chem. Soc. Rev. 2008, 37, 1520–1529.
[40] S. Khetan, J. A. Burdick, Soft Matter 2011, 7, 830–838.
[41] E. R. Draper, D. J. Adams, Chem. Commun. 2016, 52, 8196–8206.
[42] E. R. Draper, T. O. McDonald, D. J. Adams, Chem. Commun. 2015, 51,
12827–12830.
Acknowledgements
We are grateful for the financial support from EC H2020 – Marie
Skłodowska-Curie Actions – Innovative Training Network, Multi-
App (project number: 642793) and the Deutsche
Forschungsgemeinschaft (DFG EXC 1003). Lukas Ibing (MEET,
WWU Münster) is acknowledged for SEM measurements.
[43] S. H. Kim, Y. Sun, J. A. Kaplan, M. W. Grinstaff, J. R. Parquette, New
J. Chem. 2015, 39, 3225–3228.
[44] Z. Qiu, H. Yu, J. Li, Y. Wang, Y. Zhang, Chem. Commun. 2009, 3342–
3344.
Keywords: light-responsive materials • arylazopyrazole •
[45] J. F. Xu, Y. Z. Chen, D. Wu, L. Z. Wu, C. H. Tung, Q. Z. Yang, Angew.
Chem. Int. Ed. 2013, 52, 9738–9742.
dynamic covalent chemistry • supramolecular polymers • gels
[46] E. R. Draper, E. G. B. Eden, T. O. McDonald, D. J. Adams, Nat. Chem.
2015, 7, 848–852.
[47] J. K. Sahoo, S. K. M. Nalluri, N. Javid, H. Webb, R. V. Ulijn, Chem.
Commun. 2014, 50, 5462–5464.
[48] K. Tiefenbacher, H. Dube, D. Ajami, J. Rebek, Chem. Commun. 2011,
47, 7341–7343.
[49] J. T. van Herpt, M. C. A. Stuart, W. R. Browne, B. L. Feringa, Chem.
Eur. J. 2014, 20, 3077–3083.
[50] S. Wang, W. Shen, Y. Feng, H. Tian, Chem. Commun. 2006, 1497–
1499.
[51] S. K. M. Nalluri, J. Voskuhl, J. B. Bultema, E. J. Boekema, B. J. Ravoo,
Angew. Chem. Int. Ed. 2011, 50, 9747–9751.
[52] R. Klajn, Pure Appl. Chem. 2010, 82, 2247–2279.
[53] S.-C. Cheng, K.-J. Chen, Y. Suzaki, Y. Tsuchido, T.-S. Kuo, K.
Osakada, M. Horie, J. Am. Chem. Soc. 2018, 140, 90–93.
[54] L. Stricker, E.-C. Fritz, M. Peterlechner, N. L. Doltsinis, B. J. Ravoo, J.
Am. Chem. Soc. 2016, 138, 4547–4554.
[55] C. E. Weston, R. D. Richardson, P. R. Haycock, A. J. P. White, M. J.
Fuchter, J. Am. Chem. Soc. 2014, 136, 11878–11881.
[56] S. Crespi, N. A. Simeth, B. König, Nat. Rev. Chem. 2019, DOI:
10.1038/s41570-019-0074-6.
[57] L. Stricker, M. Boeckmann, T. M. Kirse, N. L. Doltsinis, B. J. Ravoo,
Chem. Eur. J. 2018, 24, 8639–8647.
[58] S. Engel, N. Möller, L. Stricker, M. Peterlechner, B. J. Ravoo, Small
2018, 14, 1704287.
[59] N. Möller, T. Hellwig, L. Stricker, S. Engel, C. Fallnich, B. J. Ravoo,
Chem. Commun. 2017, 53, 240–243.
[60] M. Schnurbus, L. Stricker, B. J. Ravoo, B. Braunschweig, Langmuir
2018, 34, 6028–6035.
[61] S. Lamping, L. Stricker, B. J. Ravoo, Polym. Chem. 2019, 10, 638–690.
[62] J. Moratz, L. Stricker, S. Engel, B. J. Ravoo, Macromol. Rapid
Commun. 2018, 39, 1700256.
[63] V. Adam, D. K. Prusty, M. Centola, M. Skugor, J. S. Hannam, J. Valero,
B. Kloeckner, M. Famulok, Chem. Eur. J. 2018, 24, 1062–1066.
[64] C.-W. Chu, B. J. Ravoo, Chem. Commun. 2017, 53, 12450–12453.
[65] Y. Zhou, M. Xu, J. Wu, T. Yi, J. Han, S. Xiao, F. Li, C. Huang, J. Phys.
Org. Chem. 2008, 21, 338–343.
[1]
[2]
[3]
P. Terech, R. G. Weiss, Chem. Rev. 1997, 97, 3133–3160.
L. A. Estroff, A. D. Hamilton, Chem. Rev. 2004, 104, 1201–1217.
K. Tao, A. Levin, L. Adler-Abramovich, E. Gazit, K. Tao, Chem. Soc.
Rev. 2016, 45, 3935–3953.
[4]
[5]
Kitamura, J. Am. Chem. Soc. 2005, 127, 11134–11139.
[6] S. Yagai, Y. Monma, N. Kawauchi, T. Karatsu, A. Kitamura, Org. Lett.
2007, 9, 1137–1140.
S. Fleming, R. V Ulijn, Chem. Soc. Rev. 2014, 43, 8150–8177.
S. Yagai, T. Nakajima, K. Kishikawa, S. Kohmoto, T. Karatsu, A.
[7]
X. Yan, D. Xu, X. Chi, J. Chen, S. Dong, X. Ding, Y. Yu, F. Huang, Adv.
Mater. 2012, 24, 362–369.
[8]
5608–5609.
[9]
M. Enomoto, A. Kishimura, T. Aida, J. Am. Chem. Soc. 2001, 123,
N. Sreenivasachary, J.-M. Lehn, Proc. Natl. Acad. Sci. 2005, 102,
5938–5943.
[10] W. Weng, Z. Li, A. M. Jamieson, S. J. Rowan, Macromolecules 2009,
42, 236–246.
[11] M. M. Piepenbrock, G. O. Lloyd, N. Clarke, J. W. Steed, Chem. Rev.
2010, 110, 1960–2004.
[12] C. Rest, M. J. Mayoral, K. Fucke, J. Schellheimer, V. Stepanenko, G.
Fernández, Angew. Chem. Int. Ed. 2014, 53, 700–705.
[13] S. S. Babu, V. K. Praveen, A. Ajayaghosh, Chem. Rev. 2014, 114,
1973–2129.
[14] L. Brunsveld, B. J. B. Folmer, E. W. Meijer, R. P. Sijbesma, Chem. Rev.
2001, 101, 4071–4098.
[15] T. Aida, E. W. Meijer, S. I. Stupp, Science 2012, 335, 813–817.
[16] Z. Yu, F. Tantakitti, T. Yu, L. C. Palmer, G. C. Schatz, S. I. Stupp,
Science 2016, 351, 497–502.
[17] S. Grigoriou, E. K. Johnson, L. Chen, D. J. Adams, T. D. James, P. J.
Cameron, Soft Matter 2012, 8, 6788–6791.
[18] H. Frisch, P. Besenius, Macromol. Rapid Commun. 2015, 36, 346–363.
[19] R. Orbach, L. Adler-Abramovich, S. Zigerson, I. Mironi-Harpaz, D.
Seliktar, E. Gazit, Biomacromolecules 2009, 10, 2646–2651.
[20] S. Kiyonaka, K. Sugiyasu, S. Shinkai, I. Hamachi, J. Am. Chem. Soc.
2002, 124, 10954–10955.
[21] R. V. Ulijn, J. Mater. Chem. 2006, 16, 2217–2225.
[22] Z. Yang, G. Liang, B. Xu, Acc. Chem. Res. 2008, 41, 315–326.
[66] A. Brizard, M. Stuart, K. van Bommel, A. Friggeri, M. de Jong, J. van
Esch, Angew. Chem. Int. Ed. 2008, 47, 2063–2066.
This article is protected by copyright. All rights reserved.