3
Shown in Table 1 are the N’-hydroxy-carboxyamidines (6-
12)23 that were used in the synthesis of 15-29 using the optimized
procedure. For the acylbenzotriazoles, we employed both aryl
(13, R2 = Ph) and alkyl (14, R2 = CH3) derivatives. For the
unsubstituted (15-16) and the substituted (17-20) 2-amino-N'-
hydroxy-benzamidine derivatives, reasonable to good yields were
obtained (51-85%). The yields were similar for both the pyridine
(21-22) and the pyrimidine (23-24) variants. This protocol could
also access 5-5 hetero-bicycles (25-26) in reasonable yields. Of
particular note, bridgehead nitrogen heterocycle pyrazolo[1,5-
a]pyridines 27 and 28 were accessible in practical yields using
this methodology.18
the N’-hydroxy-carboxyamidines efficiently in polar aprotic
solvent and the ability to induce cyclocondensation to the
oxadiazole by base addition and then Boulton-Katritzky
rearrangement via temperature increase. This synthetic
methodology, forming a nitrogen-nitrogen bond in the rapid,
convergent assembly of complex systems from simple starting
materials is of utility to both the chemical and pharmaceutical
communities.
Acknowledgments
K.W.K., L.E.A., L.E.B., and Z.J.H. were supported by the
Teva Summer Internship program. The Authors gratefully
acknowledge the support of Dr. Kevin Wells-Knecht for
obtaining high-resolution mass spectra and Dr. Mark Ator for
helpful editorial suggestions.
Table 1.
One-pot Syntheses of Bicyclic Nitrogen Heterocycles
a) DMSO, RT
15-28
b) NaOtBu
Supplementary data
RT to 150ºC
Experimental procedures and characterization for compound
26. Supplementary data associated with this article can be found,
in the online version.
6-12
See table
13, R2 = Ph
14, R2 = CH3
R1-N’-hydroxy-
carboxyamidines
Example (%
Isolated Yield)
Product
References and notes
1.
2.
Blair, L.M.; Sperry, J. J. Nat. Prod. 2013, 76, 794−812.
Huang, W. S.; Metcalf, C. A.; Sundaramoorthi, R.; Wang, Y. H.;
Zou, D.; Thomas, R. M.; Zhu, X. T.; Cai, L. S.; Wen, D.; Liu, S.
Y.; Romero, J.; Qi, J. W.; Chen, I.; Banda, G.; Lentini, S. P.; Das,
S.; Xu, Q. H.; Keats, J.; Wang, F.; Wardwell, S.; Ning, Y. Y.;
Snodgrass, J. T.; Broudy, M. I.; Russian, K.; Zhou, T. J.;
Commodore, L.; Narasimhan, N. I.; Mohemmad, Q. K.; Iuliucci,
J.; Rivera, V. M.; Dalgarno, D. C.; Sawyer, T. K.; Clackson, T.;
Shakespeare, W. C. J. Med. Chem. 2010, 53, 4701−4719.
Menear, K. A.; Adcock, C.; Boulter, R.; Cockcroft, X.; Copsey,
L.; Cranston, A.; Dillon, K. J.; Drzewiecki, J.; Garman, S.;
Gomez, S.; Javaid, H.; Kerrigan, F.; Knights, C.; Lau, A.; Loh, V.
M.; Matthews, I. T. W.; Moore, S.; O’Connor, M. J.; Smith, G. C.
M.; Martin, N. M. B. J. Med. Chem. 2008, 51, 6581−6591.
Terrett, N.K.; Bell, A. S.; Brown, D.; Ellis, P. Bioorg. Med. Chem.
Lett. 1996, 6, 1819-1824.
Tšupova, S; Mäeorg, U. Heterocycles 2014, 88, 129-173.
Kuz'menko, T. A.; Morkovnik, A. S.; Divaeva, L. N.; Borodkin,
G. S.; Kuz'menko, V. V. Chem. Heterocycl. Compd. 2015, 50,
1575-1585.
Nishigaya, Y.; Umei, K.; Yamamoto, E.; Kohno, Y.; Seto, S.
Tetrahedron Lett. 2014, 55, 5963-5966.
Tekiner-Gulbas, B.; Filak, L.; Vasko, G. A.; Egyed, O.; Yalcin, I.;
Aki-Sener, E.; Riedl, Z.; Hajos, G. Heterocycles 2008, 75, 2005-
2012.
15, R2 = Ph (85%)
16, R2 = CH3 (77%)
6
7
17, R2 = Ph (57%)
18, R2 = CH3 (51%)
3.
4.
19, R2 = Ph (54%)
20, R2 = CH3 (55%)
8
9
5.
6.
21, R2 = Ph (80%)
22, R2 = CH3 (72%)
7.
8.
23, R2 = Ph (65%)
24, R2 = CH3 (85%)
9.
Heim-Riether, A.; Healy, J. J. Org. Chem. 2005, 70, 7331-7337.
10
10. Evans, L.E.; Cheeseman, M.D.; Jones, K. Org. Lett. 2012, 14,
3546–3549
11. Correa, A,; Tellitu, I.; Domínguez, E.; SanMartin R. J. Org.
Chem. 2006, 71, 3501-3505.
12. Greszler, S.; Stevens, K. L. Org. Synth. 2009, 86, 18-27.
13. Deng, X.; Zhou, W.; Weisberg, E.; Wang, J.; Zhang, J.; Sasaki, T.;
Nelson, E.; Griffin, J.D.; Janne, P. A.; Gray, N. S. Bioorg. Med.
Chem. Lett. 2012, 22. 4579–4584
14. Witherington, J. ; Bordas, V.; Garland, S. L.; Hickey, D. M. B.;
Ife, R. J.; Liddle, J.; Saunders, M.; Smith, D.G.; Ward, R. W.
Bioorg. Med. Chem. Lett. 2003, 13, 1577-1580.
15. Witherington, J. PCT Int. Appl., WO 2003080617, 2003.
16. Berry, D.A.; Wotring, L.L.; Drach, J.C.; Townsend, L.B.
Nucleosides Nucleotides, 1994, 13, 405-420.
25, R2 = Ph (53%)
26, R2 = CH3 (53%)
11
12
27, R2 = Ph (58%)
28, R2 = CH3 (56%)
17. Menet, C. J.M.; Hodges, A.J.; Vater, H. D. PCT Int. Appl. WO
2012146659, 2012.
3. Conclusions
18. Ott, G.R.; Anzalone, A.V. Synlett 2011, 20, 3018-3022
19. Hemming, K. Science of Synthesis 2004, 13, 127-184.
20. Katritzky, A.R.; Shestopalov, A.A.; Suzuki, K. ARKIVOC 2005, 7,
36-55.
21. Katritzky, A.R.; Suzuki, K.; Wang, Z. Synlett 2005, 11, 1656-
1665.
In summary, we have expanded the scope and improved the
one-flask protocol to deliver diverse N-N bond containing
heterocycles
from
N’-hydroxycarboxyamidines
and
acylbenzotriazoles. The key linchpins of this general strategy
were the balanced reactivity of the acylbenzotriazole to acylate