Paper
RSC Advances
Table 4 Comparison of different methods
Entry
Product
Method Aa, %
Method Bb, %
Method Cc, %
This workd, %
1
2
3
4
5
6
7
8
3a
3b
3c
3d
3e
3h
3o
3p
3q
3v
98
—
55
91
—
—
61
93
85
—
—
—
68
—
75
—
—
96
90
84
—
—
—
—
—
—
75
78
96
92
—
90
—
95
—
—
—
95
87
82
—
—
97
95
85
82
38
85
72
80
72
99
72
96
90
70
9
10
11
12
13
14
3y
3z
3dh
3df
a
Reaction conditions: 1 (0.2 mmol), 2 (0.24 mmol), IPrPd(allyl)Cl (0.006 mmol), K2CO3 (0.3 mmol), H2O (2 mmol), toluene (1 mL) at 110 ꢀC for 16 h
under Ar. b Reaction conditions: 1 (1.0 equiv.), 2 (2.0 equiv.), K2CO3 (3.0 equiv.), PEPPSI-IPr (3 mol%), 1,2-DME (0.25 M), 110 ꢀC, 16 h. c Reaction
conditions: 1 (0.50 mmol), 2 (0.60 mmol), Cs2CO3 (0.75 mmol), SIPrPd(h3-1-t-Bu-indenyl)Cl (0.005 mmol), H2O (2 mL), THF (0.5 mL), 40 ꢀC, 4 h.
d
Reaction conditions: 1 (0.7 mmol), 2 (0.735 mmol), NaH (0.735 mmol), 130 ꢀC (oil-bath temperature), 20 h.
should be noted. Therefore, our method is a preparatively
useful extension of existing methodology of amide synthesis.
4 R. M. Lanigan and T. D. Sheppard, Eur. J. Org. Chem., 2013,
2013, 7453–7465.
5 M. Bodanszky, in Major Methods of Peptide Bond Formation,
ed. E. Gross and J. Meienhofer, Academic Press, 1979, vol.
1, pp. 105–196.
Conclusions
6 E. Valeur and M. Bradley, Chem. Soc. Rev., 2009, 38, 606–631.
7 R. M. de Figueiredo, J.-S. Suppo and J.-M. Campagne, Chem.
Rev., 2016, 116, 12029–12122.
8 T. Krause, S. Baader, B. Erb and L. J. Gooßen, Nat. Commun.,
2016, 7, 11732.
A general, efficient, green method of aromatic amides synthesis
from phenyl esters and aromatic amines under solvent- and
transition metal-free conditions using equivalent amounts of
NaH as a base was elaborated. Reaction and isolation proce-
dures are simple, robust, easily reproducible, and scalable. The
new method is characterized by high atom economy.
9 S. Gaspa, A. Porcheddu and L. De Luca, Org. Biomol. Chem.,
2013, 11, 3803–3807.
10 J. M. Hoerter, K. M. Otte, S. H. Gellman and S. S. Stahl, J. Am.
Chem. Soc., 2006, 128, 5177–5183.
11 J. M. Hoerter, K. M. Otte, S. H. Gellman, Q. Cui and
S. S. Stahl, J. Am. Chem. Soc., 2008, 130, 647–654.
Conflicts of interest
There are no conicts to declare.
´
´
12 P. Acosta-Guzman, A. Mateus-Gomez and D. Gamba-
´
Sanchez, Molecules, 2018, 23, 2382.
Acknowledgements
13 Y. Liu, M. Achtenhagen, R. Liu and M. Szostak, Org. Biomol.
Chem., 2018, 16, 1322–1329.
14 G. Li and M. Szostak, Nat. Commun., 2018, 9, 4165.
15 L. Becerra-Figueroa, A. Ojeda-Porras and D. Gamba-Sanchez,
J. Org. Chem., 2014, 79, 4544–4552.
16 K. Banert, K. M. Aitken, R. A. Aitken, M. M. K. Boysen and
S. A. Rzhevskiy, G. A. Chesnokov, P. S. Gribanov, M. A.
Topchiy, M. S. Nechaev and A. F. Asachenko are thankful to
Russian Science Foundation (RSF) for nancial support (project
number 17-13-01076). Authors are grateful to the Moscow State
University (Russia) for the opportunity to use the NMR facilities
of the Center for Magnetic Tomography and Spectroscopy. Part
of this work was carried out by A. A. Ageshina as part of the A. V.
Topchiev Institute of Petrochemical Synthesis (TIPS) Russian
Academy of Sciences (RAS) State Program.
´
¨
S. Brase, Science of Synthesis: Houben-Weyl Methods of
Molecular Transformations Vol. 41: Nitro, Nitroso, Azo, Azoxy,
and Diazonium Compounds, Azides, Triazenes, and
Tetrazenes, Thieme, 2014.
17 E. C. d. Lima, C. C. d. Souza, R. d. O. Soares, B. G. Vaz,
M. N. Eberlin, A. G. Dias and P. R. R. Costa, J. Braz. Chem.
Soc., 2011, 22, 2186–2190.
Notes and references
18 M. T. La and H.-K. Kim, Can. J. Chem., 2018, 96, 1135–1141.
19 S. Shi, S. P. Nolan and M. Szostak, Acc. Chem. Res., 2018, 51,
2589–2599.
20 B. Gnanaprakasam and D. Milstein, J. Am. Chem. Soc., 2011,
133, 1682–1685.
1 R. C. Larock, Comprehensive Organic Transformations: A Guide
to Functional Group Preparations, Wiley, 1999.
2 C. A. G. N. Montalbetti and V. Falque, Tetrahedron, 2005, 61,
10827–10852.
3 V. R. Pattabiraman and J. W. Bode, Nature, 2011, 480, 471.
This journal is © The Royal Society of Chemistry 2019
RSC Adv., 2019, 9, 1536–1540 | 1539