COMMUNICATIONS
Tetrahedron Lett. 1998, 39, 183 ± 186; s) R. D. Cink, C. J. Forsyth, J.
Org. Chem. 1997, 62, 5672 ± 5673; t) C. S. Lee, C. J. Forsyth, Tetrahe-
dron Lett. 1996, 37, 6449 ± 6452; u) total synthesis of phorboxazole A:
C. J. Forsyth, F. Ahmed, R. D. Cink, C. S. Lee, J. Am. Chem. Soc. 1998,
120, 5597± 5598.
[27] We are aware of few examples of this type of selective lithium ± hal-
ogen exchange reaction. For a report involving bishalogenated arenes,
see M. Kihara, M. Kashimoto, Y. Kobayashi, Tetrahedron 1992, 48,
67± 78.
[28] For an example of a chelation-controlled zincate addition, see D. R.
Williams, W. S. Kissel, J. Am. Chem. Soc. 1998, 120, 11198 ± 11199.
[29] For an example of a chelation-controlled aluminate addition, see H.
Imogai, Y. Petit, M. Larcheveque, Tetrahedron Lett. 1996, 37, 2573 ±
2576.
[30] A similar solvent effect has been noted in additions of alkenyl
Grignard reagents to a-alkoxyaldehydes: G. E. Keck, M. A. Andrus,
D. R. Romer, J. Org. Chem. 1991, 56, 417± 420.
[31] For the preparation of MgBr2 as a solution in Et2O/benzene, see M.
Nakatsuka, J. A. Ragan, T. Sammakia, D. B. Smith, D. E. Uehling,
S. L. Schreiber, J. Am. Chem. Soc. 1990, 112, 5583 ± 5601.
[4] D. A. Evans, D. M. Fitch, Angew. Chem. 2000, 112, 2636 ± 2640;
Angew. Chem. Int. Ed. 2000, 39, 2536 ± 2540.
[5] Abbreviations: dr diastereomer ratio; TES triethylsilyl; TPS
triphenylsilyl; TIPS triisopropylsilyl; Ms methanesulfonyl; Bn
benzyl; TMS trimethylsilyl; DBU 1,8-diazabicyclo[5.4.0]undec-7-
ene; DMF N,N-dimethylformamide; DMAP N,N-dimethylami-
nopyridine; LDA lithium diisopropylamide; TMP 2,2,6,6-tetra-
methylpiperidide; NBS N-bromosuccinimide; Tr trityl triphe-
nylmethyl; Ts para-toluenesulfonyl; DIAD diisopropylazodicar-
boxylate; THF tetrahydrofuran; HMDS hexamethyldisilazide;
pyr pyridine; TEA triethylamine; DMSO dimethyl sulfoxide;
Tf triflate trifluoromethanesulfonyl.
[6] D. A. Evans, M. C. Kozlowski, J. A. Murry, C. S. Burgey, K. R. Campos,
B. T. Connell, R. J. Staples, J. Am. Chem. Soc. 1999, 121, 669 ± 685.
[7] D. A. Evans, M. D. Ennis, T. Le, N. Mandel, G. Mandel, J. Am. Chem.
Soc. 1984, 106, 1154 ± 1156.
[8] a) D. L. Boger, T. T. Curran, J. Org. Chem. 1992, 57, 2235 ± 2244;
b) D. P. Provencal, C. Gardelli, J. A. Lafontaine, J. W. Leahy, Tetrahe-
dron Lett. 1995, 36, 6033 ± 6036.
Asymmetric Synthesis of Phorboxazole BÐ
Part II: Synthesis of the C1 ± C19 Subunit and
Fragment Assembly**
[9] The product ratio was determined by HPLC analysis (Zorbax, 4.6 Â
150 mm, 5 mm silica gel; 3% iPrOH in CH2Cl2, flow rate
1 mLminÀ1; Tr minor 12.5 min; Tr major 14.9 min).
David A. Evans* and Duke M. Fitch
[10] For examples of b-ketoimide aldol reactions, see a) D. A. Evans, H. P.
Ng, J. S. Clark, D. L. Rieger, Tetrahedron 1992, 48, 2127± 2142;
b) D. A. Evans, H. P. Ng, D. L. Rieger, J. Am. Chem. Soc. 1993, 115,
11446 ± 11459.
In the preceding communication the syntheses of the C20 ±
C38 and C39 ± C46 phorboxazole B subunits were presented.[1]
Herein we focus on the synthesis of the final C1 ± C19 bispyran
subunit 1 and the successful assembly of these fragments into
phorboxazole B.
[11] D. A. Evans, K. T. Chapman, E. M. Carreira, J. Am. Chem. Soc. 1988,
110, 3560 ± 3578.
1
[12] Product ratio determined by H NMR analysis (500 MHz).
[13] M. D. Lewis, J. K. Cha, Y. Kishi, J. Am. Chem. Soc. 1982, 104, 4976± 4978.
[14] For similar conditions employing ethylene glycol in place of methanol,
see a) T. H. Chan, M. A. Brook, T. Chaly, Synthesis 1983, 203 ± 205;
b) ref. [4].
The retrosynthesis of the C1 ± C19 region (Scheme 1)[2]
began with disconnection of the peripheral functionality at
C4 and C19, and the masking of leaving groups at these
positions as differentially protected primary hydroxyl groups.
The C7 exocyclic olefin was masked as a protected ketone and
the C11 stereocenter was envisioned to arrive through
reduction of hemiketal 2. Ring-chain tautomerization of 2
À
[15] For a related reduction with Raney-Ni, see R. Bacardit, M. Moreno-
Ä
Manas, Tetrahedron Lett. 1980, 21, 551 ± 554.
[16] For reports of oxazole lithiation, see ref. [3h], and references therein.
[17] A. B. Smith III, S. M. Condon, J. A. McCauley, J. L. Leazer, Jr., J. W.
Leahy, R. E. Maleczka, Jr., J. Am. Chem. Soc. 1997, 119, 962 ± 973;
A. B. Smith III, S. M. Condon, J. A. McCauley, J. L. Leazer, Jr., J. W.
Leahy, R. E. Maleczka, Jr., J. Am. Chem. Soc. 1995, 117, 5407± 5408.
[18] Conditions were adapted from: C. H. Heathcock, S. D. Young, J. P.
Hagen, R. Pilli, U. Badertscher, J. Org. Chem. 1985, 50, 2095 ± 2105.
[19] D. B. Dess, J. C. Martin, J. Am. Chem. Soc. 1991, 113, 7277 ± 7287.
[20] (R)-3-(triphenylmethyl)-1,2-epoxypropane is commercially available
from Aldrich Chemical Co. and may also be prepared in 95% ee by
Sharpless asymmetric epoxidation of allyl alcohol and in situ
tritylation. Recrystallization provides the enantiomerically enriched
compound: H. S. Hendrickson, E. K. Hendrickson, Chem. Phys.
Lipids 1990, 53, 115 ± 120.
[21] (E)-bis(tributylstannyl)ethylene was prepared by the following meth-
od: a) E. J. Corey, R. H. Wollenberg, J. Am. Chem. Soc. 1974, 96,
5581 ± 5583; see also b) A. N. Nesmeyanov, A. E. Borisov, Dokl.
Akad. Nauk SSSR 1967, 174, 96 ± 99; For BF3 ´ OEt2-promoted
organolithium additions to epoxides, see c) M. J. Eis, J. E. Wrobel,
B. Ganem, J. Am. Chem. Soc. 1984, 106, 3693 ± 3694.
and aldol disconnection of the C12
C13 bond affords the trans
pyran methylketone fragment 3 and the oxazole aldehyde
fragment 4.
Construction of the C4 ± C12 methylketone 3 began from the
d-hydroxy-b-ketoester 5 previously employed in the construc-
tion of the C33 ± C38 lactone (Scheme 2).[1, 3] Treatment of 5
with ethylene glycol and trimethylsilyl chloride[4] resulted in a
simultaneous cyclization and protection of the ketone to
deliver lactone 6 in good yield. Reduction (DIBAlH) and
acetylation (Ac2O, pyr, DMAP) provided 7 in quantitative
[22] Conditions were adapted from: R. Bellingham, K. Jarowicki, P.
Kocienski, V. Martin, Synthesis 1996, 285 ± 296.
[23] Conditions were adapted from: ref. [3p]. For the synthesis of (E)-3-
iodo-2-methylprop-2-enal, see R. Baker, J. L. Castro, J. Chem. Soc.
Perkin Trans. 1 1990, 47± 65.
[*] Prof. D. A. Evans, D. M. Fitch
Department of Chemistry & Chemical Biology
Harvard University
Cambridge, MA 02138 (USA)
Fax : (1)617-495-1460
[24] J. R. Parikh, W. E. von Doering, J. Am. Chem. Soc. 1967, 89, 5505 ±
5507.
[25] M. T. Reetz, Angew. Chem. 1984, 96, 542 ± 555; Angew. Chem. Int. Ed.
Engl. 1984, 23, 556 ± 569.
[26] After quenching the alkenyllithium with H2O, the selectivity of the
lithium ± halogen exchange was determined to be 20:1 (C39I:C46Br) by
1H NMR spectroscopy.
[**] Financial support has been provided by the National Institutes of
Health (GM-33328) and the National Science Foundation. The
NIH BRS Shared Instrumentation Grant Program 1-S10-RR04870
and the NSF (CHE 88-14019) are acknowledged for providing NMR
facilities.
2536
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2000
1433-7851/00/3914-2536 $ 17.50+.50/0
Angew. Chem. Int. Ed. 2000, 39, No. 14