3536
Y. Suhara et al. / Bioorg. Med. Chem. Lett. 12 (2002) 3533–3536
6. Kittaka, A.; Suhara, Y.; Takayanagi, H.; Fujishima, T.;
Kurihara, M.; Takayama, H. Org. Lett. 2000, 2, 2619.
7. Trials to modify the triene moiety in the D3 structure to
induce the differentiation of HL-60 cells were interesting, but
not very productive to date. For singlet oxygen adducts: (a)
Yamada, S.; Yamamoto, K.; Naito, H.; Suzuki, T.; Ohmori,
M.; Takayama, H.; Shiina, Y.; Miyaura, C.; Tanaka, H.; Abe,
E.; Suda, T.; Matsunaga, I.; Nishii, Y. J. Med. Chem. 1985,
28, 1148. (b) Shiina, Y.; Miyaura, C.; Tanaka, H.; Abe, E.;
Yamada, S.; Yamamoto, K.; Ino, E.; Takayama, H.; Matsu-
naga, I.; Nishi, Y.; Suda, T. J. Med. Chem. 1985, 28, 1153.
8. All A-ringdiastereomers of 1, see: Fujishima, T.; Konno,
K.; Nakagawa, K.; Kurobe, M.; Okano, T.; Takayama, H.
Bioorg. Med. Chem. 2000, 8, 123.
9. Examples of 2-substituted 1a,25-dihydroxy-19-norvitamin
D3 derivatives, see: (a) Sicinski, R. R.; Perlman, K. L.;
DeLuca, H. F. J. Med. Chem. 1994, 37, 3730. (b) Sicinski,
R. R.; Prahl, J. M.; Smith, C. M.; DeLuca, H. F. J. Med.
Chem. 1998, 41, 4662. (c) Sicinski, R. R.; Prahl, J. M.; Smith,
C. M.; DeLuca, H. F. Steroids 2002, 67, 247. (d) Mikami, K.;
Koizumi, Y.; Osawa, A.; Terada, M.; Takayama, H.; Naka-
gawa, K.; Okano, T. Synlett 1999, 1899.
13. Anisfeld, S. T.; Lansbury, P., Jr. J. Org. Chem. 1990, 55,
5560.
14. Data for 3a: 1H NMR (600 MHz, CD3OD) d 0.66 (3H, s),
0.97 (1H, d, J=6.6 Hz), 1.05–1.10 (1H, m), 1.16–1.18 (7H, m),
1.23–1.29 (2H, m), 1.31–1.48 (9H, m), 1.54–1.59 (2H, m),
1.62–1.67 (2H, m), 1.73–1.80 (2H, m), 1.85–1.89 (1H, m),
1.92–1.98 (1H, m), 2.04 (1H, dt, J=3.0, 12.9 Hz), 2.04–2.10
(1H, m), 2.72 (1H, dt, J=2.9, 13.6 Hz), 3.27 (1H, dd, J=6.9,
12.9 Hz), 3.38 (1H, dd, J=6.0, 13.2 Hz), 3.53 (1H, dd, J=3.0,
13.2 Hz), 3.84 (1H, dd, J=3.3, 12.9 Hz), 3.95–4.00 (2H, m),
5.61 (1H, s). HRMS (EI) m/z: calcd for C25H43O4N 421.3192.
Found 421.3181 (M+). Data for 3b: 1H NMR (600 MHz,
CD2Cl2, selected) d 0.61 (3H, s), 0.95 (1H, d, J=6.6 Hz), 1.07
(1H, t, J=8.1 Hz), 1.92 (1H, m), 2.03–2.06 (2H, m), 2.74–2.83
(2H, m), 2.95–3.02 (1H, m), 3.23 (1H, br d, J=13.2 Hz), 3.50
(1H, br d, J=6.0 Hz), 3.57 (1H, br d, J=6.0 Hz), 3.78 (1H, br
s), 3.85 (0.6H, br d, J=13.2 Hz), 3.94–3.97 (1H, m), 4.04
(0.4H, br s), 4.34 (1H, br d, J=10.8 Hz), 5.58 (1H, s). HRMS
(EI) m/z: calcd for C25H43O5N 437.3144. Found 437.3148
1
(M+). Data for 3c: H NMR (600 MHz, CD2Cl2, selected) d
0.61 (3H, s), 0.95 (1H, d, J=6.6 Hz), 3.63–3.67 (4H,
m,-OCH2CH2CH2OH), 5.56 (1H, s). HRMS (EI) m/z: calcd
for C28H49O6N 495.3560. Found 495.3558 (M+).
15. Imae, Y.; Manaka, A.; Yoshida, N.; Ishimi, Y.; Shinki, T.;
Abe, E.; Suda, T.; Konno, K.; Takayama, H.; Yamada, S.
Biochim. Biophys. Acta 1994, 1213, 302.
10. Rochel, N.; Wultz, J. M.; Mitschler, A.; Klaholz, B.;
Moras, D. Mol. Cell 2000, 5, 173.
11. Trost, B. M.; Dumas, J.; Villa, M. J. Am. Chem. Soc.
1992, 114, 9836.
12. The E/Z ratio of this reaction was 92:8 with 98% chemical
yield. Chemical shifts of the vinylic proton of the E- and Z-
isomers are 5.45 and 5.65 ppm, respectively. Trost et al.
reported that stereochemistry on bromoolefins of the corre-
spondingCD-ringpart in ref 11, in which the vinylic protone
of the E-isomer (d 5.63 ppm) appears in a higher field than
that of the Z-isomer (5.93 ppm) due to the anisotropy of the
C–C single bond of the five-membered D-ring.
16. The bindingaffinity of 2 for VDR (pig) was reported as
30% of the natural hormone 1, see: Zhou, X.; Zhu, G.-D.;
Van Haver, D.; Vandewalle, M.; De Clercq, P. J.; Verstuyf,
A.; Bouillon, R. J. Med. Chem. 1999, 42, 3539.
17. (a) Doi, T.; Hijikuro, I.; Takahashi, T. J. Am. Chem. Soc.
2001, 123, 3716. (b) Hijikuro, I.; Doi, T.; Takahashi, T. In
Symposium Papers, The 43rd Symposium on the Chemistry of
Natural Products, Osaka, 2001; p 79.