5718
References
1. (a) Boger, D. L.; Weinreb, S. M. Hetero Diels±Alder Methodology in Organic Synthesis; Academic Press: San
Diego, 1987; pp. 34±70. (b) Weinreb, S. M. In Comprehensive Organic Synthesis; Trost, B. M.; Fleming, I. Eds.
Pergamon: Oxford, 1991; Vol. 5, pp. 401±449. (c) Boger, D. L. In Comprehensive Organic Synthesis; Trost, B. M.;
Fleming, I. Eds. Pergamon: Oxford, 1991; Vol. 5, pp. 451±512. (d) Weinreb, S. M.; Scola, P. M. Chem. Rev. 1989,
89, 1525±1534.
2. Roush, W. R. In Comprehensive Organic Synthesis; Trost, B. M.; Fleming, I. Eds. Pergamon: Oxford, 1991; Vol. 5,
pp. 513±550.
3. Tanino, K.; Shimizu, T.; Kuwahara, M.; Kuwajima, I. J. Org. Chem. 1998, 63, 2422±2423.
4. (a) Merten, R.; Muller, G. Angew. Chem. 1962, 74, 866±867. (b) Tohyama, Y.; Tanino, K.; Kuwajima, I. J. Org.
Chem. 1994, 59, 518±519.
5. Preparation of 2a: A mixture of aldehyde 1a (0.60 g, 1.7 mmol), urethane (0.45 g, 5.1 mmol), and camphorsulfonic
acid (78 mg, 0.34 mmol) in benzene (3.4 mL) was stirred at room temperature for 24 h. A saturated aqueous
solution of NaHCO3 was added, and the mixture was separated. The aqueous layer was extracted with ether, and
the combined organic layer was dried over MgSO4. Concentration under reduced pressure followed by puri®cation
by ¯ash chromatography aorded 0.82 g (92%) of biscarbamate 2a. IR (neat) 3350, 1739, 1558, 1471, 1224, 1060
cm^1; 1H NMR (270 MHz, CDCl3) ꢀ 0.88 (t, J=7.1 Hz, 3 H), 0.90 (t, J=7.1 Hz, 3 H), 1.04 (s, 18 H), 1.16±1.80 (m,
14 H), 2.29 (t, J=7.0 Hz, 2 H), 3.92±4.32 (m, 5 H), 5.20±5.50 (m, 2 H), 5.84 (bs, 1 H); 13C NMR (75 MHz, CDCl3)
ꢀ 13.93, 14.05, 19.64, 20.61, 20.69, 22.49, 22.61, 22.71, 27.56 (6C), 28.29, 28.44, 31.19, 31.54, 60.58, 60.83, 61.13,
76.36, 79.34, 111.19, 155.02, 155.42.
.
6. Synthesis of ketocarbamate 4a: A mixture of biscarbamate 2a (0.23 g, 0.46 mmol) and BF3 OEt2 (0.23 mL, 1.8
mmol) in dichloroethane (1.2 mL) was stirred at room temperature for 5 h. Usual work-up (see above) aorded
cycloadduct 3a, which was treated with PPTS (12 mg, 0.05 mmol) in dichloroethane (2.3 mL) at room temperature
for 10 h. Usual work-up followed by puri®cation by ¯ash chromatography aorded 153 mg (84% from 2a) of
biscarbamate 4a. IR (CDCl3) 3440, 1720, 1510, 1420, 1270 cm^1; 1H NMR (270 MHz, CDCl3) ꢀ 0.87 (t, J=7.1 Hz,
3 H), 0.91 (t, J=7.3 Hz, 3 H), 0.97 (s, 9 H), 1.18 (s, 9 H), 1.20±1.78 (m, 14 H), 2.45 (dt, J=1.6, 7.0 Hz, 2 H), 3.72±
4.24 (m, 5 H), 4.92 (bs, 1 H).
7. (a) Linkart, F.; Laschat, S. Synlett 1994, 125±126. (b) Linkart, F.; Laschat, S.; Knickmeier, M. Liebigs Ann. Chem.
1995, 985±983. (c) Linkart, F.; Laschat, S.; Kotila, S.; Fox, T. Tetrahedron 1996, 52, 955±970.
8. Synthesis of quinoline derivative 9: A mixture of aldehyde 1a (33 mg, 0.09 mmol), p-anisidine (13 mL, 0.11 mmol),
and MS4A (65 mg) in benzene (0.45 mL) was stirred at room temperature for 3 h. The mixture was ®ltered, and
the ®ltrate was concentrated under reduced pressure. The crude imine was treated with tri¯uoromethanesulfonic
acid (10 mL, 0.11 mmol) in dichlolomethane (0.45 mL) at ^78ꢀC for 30 min. Usual work-up aorded the
corresponding dihydroquinoline derivative, which was treated with DDQ (25 mg, 0.11 mmol) in dichloroethane
(0.45 mL) at room temprature for 1 min. Concentration under reduced pressure followed by puri®cation by ¯ash
chromatography aorded 39 mg (91% from 1a) of 9: IR (neat) 1575, 1560, 1495, 1470, 1390, 1360, 1330, 1225,
1
1090, 1050 cm^1; H NMR (270 MHz, CDCl3) ꢀ 0.92 (t, J=7.3 Hz, 3 H), 0.95 (t, J=7.3 Hz, 3 H), 1.02 (s, 9 H),
1.13 (s, 9 H), 1.20±1.90 (m, 14 H), 2.10±2.40 (m, 1 H), 2.94±3.29 (m, 2 H), 3.94 (s, 3H), 5.10 (dd, J=3.6, 10.2 Hz, 1
H), 7.28 (d, J=3.3 Hz, 1 H), 7.37 (dd, J=3.3, 10.5 Hz, 1 H), 7.96 (d, J=10.5 Hz, 1 H), 13C NMR (75 MHz,
CDCl3) ꢀ 14.12, 14.32, 20.56, 22.49, 22.65, 22.86, 27.87 (3C), 28.32 (3C), 28.66, 30.16, 30.74, 31.63, 37.77, 38.22,
55.48, 82.05, 102.79, 121.51, 125.58, 126.72, 131.05, 145.08, 152.68, 156.74, 169.47.