1712
J. R. Falck et al. / Bioorg. Med. Chem. Lett. 10 (2000) 1711±1713
References and Notes
1. Review: Rameh, L. E.; Cantley, L. C. J. Biol. Chem. 1999,
274, 8347.
3. Review: Martin, T. F. J. Annu. Rev. Cell Develop. Biol.
1998, 14, 231.
4. Tolias, K. F.; Rameh, L. E.; Ishihara, H.; Shibasaki, Y.;
Chen, J.; Prestwich, G. D.; Cantley, L. C.; Carpenter, C. L. J.
Biol. Chem. 1998, 273, 18040.
5. Ban®c, H.; Downes, C. P.; Rittenhouse, S. E. J. Biol. Chem.
1998, 273, 11630.
6. Cantley, L. C.; Auger, K. R.; Carpenter, C.; Duckworth,
B.; Graziani, A.; Kapeller, R.; Solto, S. Cell 1991, 64, 281.
7. Jones, D. R.; Gonzalez-Garcia, A.; Diez, E.; Martinez-A,
C.; Carrera, A. C.; Merida, I. J. Biol. Chem. 1999, 274, 18407.
8. Whiteford, C. C.; Brearley, C. A.; Ulug, E. T. Biochem. J.
1997, 323, 597.
9. Dove, S. K.; Cooke, F. T.; Douglas, M. R.; Sayers, L. G.;
Parker, P. J.; Michell, R. H. Nature 1997, 390, 187.
10. Meijer, H. J. G.; Divecha, N.; van den Ende, H.; Mus-
grave, A.; Munnik, T. Planta 1999, 208, 294.
11. Hinchlie, K.; Irvine, R. Nature 1997, 390, 123.
12. For syntheses of other metabolites of the PI cycle, see: (a)
(3,4-PIP2) Reddy, K. K.; Rizo, J.; Falck, J. R. Tetrahedron
Lett. 1997, 38, 4729. (b) Reddy, K. K.; Ye, J.; Falck, J. R.;
Capdevila, J. H. Bioorg. Med. Chem. Lett. 1997, 7, 2115; (c)
(3,4,5-PIP3) Reddy, K. K.; Sandy, M.; Faick, J. R.; Whited,
G. J. Org. Chem. 1995, 60, 3385; (d) (4,5-PIP2) Falck, J. R.;
Krishna, U. M.; Capdevila, J. H. Tetrahedron Lett. 1999, 40,
8771.
Scheme 1. (a) MeOH/10 N HCl (12.5/1), 65 ꢀC, 0.45 h (87%); (b)
cyclohexanone (2 equiv), PTSA, DMF/PhCH3 (1/4), 140 ꢀC, 12 h
(68%); (c) MPM-Cl, NaH, DMF, 23 ꢀC, 6 h (76%); (d) MeOH/
CH2Cl2, 12 N HCl (4/1/1), 23 ꢀC, 1 h (83%); (e) S-( )-camphanic
chloride, DMAP, EI3N, CH2Cl2, 23 ꢀC. 12 h (91%); (f) MeOH, KOH,
23 ꢀC, 14 h (88%); (g) n-Bu2SnO, PhH, 85 ꢀC, 6 h; CH2CHCH2Br,
CsF, DMF, 23 ꢀC, 12 h (86%); (h) BnBr, NaH, DMF, 23 ꢀC, 4 h
(86%); (i) Rh(Ph3P)Cl, DABCO, EtOH, 78 ꢀC, 4 h; 1 N HCl/acetone
(1/9), 0.5 h (88%); (j) Phosphoramidite 10, 1H-tetrazole, CH2Cl2,
23 ꢀC, 2 h; m-CPBA, 40 ꢀC, 1 h (81%); (k) DDQ, CH2Cl2/H2O (9/1),
23 ꢀC, 4 h (80%); (l) (iPr)2NP(OBn)2, 1H-tetrazole, CH2Cl2, 23 ꢀC, 2
h; m-CPBA, 40 ꢀC, 1 h (81%); (m) Pd black, H2 (52 psi), NaHCO3 (5
equiv), EtOH/H2O (6/1), 23 ꢀC, 6 h (79%).
13. Previous syntheses of 3-PIP and/or 3,5-PIP2: Peng, J.;
Prestwich, G. D. Tetrahedron Lett. 1998, 39, 3965. Riley, A.
M.; Potter, B. V. L. ibid. 1998, 39, 6769. Bruzik, K. S.;
Kubiak, ibid 1995, 36, 24 15. Wang, D.-S.; Chen, C.-S. J. Org.
Chem. 1996, 61, 5905.
14. Lee, H. W.; Kishi, Y. J Org. Chem. 1985, 50, 4402.
15. All new compounds were fully characterized by
1H/13C/31P NMR, and MS analyses.
1
16. Spectral data for 4: H NMR(CDC13, 400 MHz) d 1.36±
1.80 (m, 10H), 2.54 (d, J=6.4 Hz, 1H), 2.64 (d, J=6.4 Hz, 1
H), 3.60 (ddd, J=2.7, 7.0, 9.3 Hz, 1H), 3.72±3.81 (m, 2H),
3.94 (app. quintet, J=3.9 Hz, 1H), 4.24 (app. t, J=6.6 Hz,
1H), 4.46 (dd,J=3.9, 6.4 Hz, 1H), 4.70 (d, J=11.4 Hz,1H),
4.74 (d, J=11.4 Hz, 1H), 4.89 (d, J=11.4 Hz, 1H), 4.94 (d,
J=11.4 Hz, 1H), 7.20±7.39 (m, 10H). 1a: 1H NMR (D2O, 400
MHz) d 0.84 (t, J=6.2 Hz, 6H), 1.14±1.38 (m, 48H), 1.48±1.62
(m, 4H), 2.12±2.39 (m, 4H), 3.38±3.42 (m, 1H), 3.75±3.82 (m,
2H), 3.94±4.01 (m, 2H), 4.06±4.13 (m, 2H), 4.25±4.31 (m, 1H),
4.37±4.46 (m, 2H), 5.29±5.36 (m, 1H); 31P NMR (121.4 MHz,
D2O, 85% H3PO4 external reference) d 1.82, 3.0. 2b: 1H
NMR (D2O, 400 MHz) d 0.86 (t, J=6.2 Hz, 6H), 1.21±1.44
(m, 16H), 1.43±1.64 (m, 4H), 2.37±2.48 (m, 4H), 3.85±4.19 (m,
7H), 4.23±4.36 (m, 1H), 4.42±4.53 (m, 2H), 5.34 (bs, 1H); 31P
NMR (121.4 MHz, D2O, 85% H3PO4 external reference) d
3.0, 1.40, 2.13.
Scheme 2. (a) (iPr)2NP(OBn)2 (1 equiv), 1H-tetrazole, CH2Cl2, 23 ꢀC,
2 h; m-CPBA, 40 ꢀC, 1 h (55%); (b) Pd black, H2 (52 psi), NaHCO3
(5 equiv), EtOH/H2O (6/1), 23 ꢀC, 6 h (79%).
Alternatively, selective phosphorylation of the C(3)-alco-
hol in 8a utilizing a limited amount of reagent provided
convenient access to 3-PIP (la) following the standard
deprotection procedure described above (Scheme 2).
Repetition of the phosphorylation of 7 using 10b,c12c
and ®nal elaboration of the adducts 8b,c as outlined in
Schemes 1 and 2 aorded lb,d and 2b,d, respectively.
The dioctanoyl glyceryl analogues (b series) are more
water soluble than the fatty acid versions (a series) and
have proven more tractable in some assays;19 both are
able to compete with natural material for binding to PIP
binding proteins. The o-aminoalkyl analogues (d series)
have been useful for the introduction of ¯uorescent,
radioactive, and anity labels.12c
17. The absolute con®guration of the less polar diastereomer
was established by the sequence outlined below and compari-
sons with standards reported by Ozaki, S.; Kohno, M.;
Nakahira, H.; Bunya, M.; Watanabe, Y. Chem. Lett. , 1988,
77.
Acknowledgements
Supported ®nancially by the Robert A. Welch Foundation
and NIH (GM31278, GM37922).
18. David, S.; Hannesian, S. Tetrahedron 1985, 41, 643.