(CDCl3, 500 MHz) d 1.33 (t, J 7.2, 3H, CH3), 3.23 and 3.41 (2 × s,
13 Z. Zhang;, A. Nichols, M. Alsbeti, J. X. Tang and J.-Y. Tang,
Tetrahedron Lett., 1998, 39, 2467–2470.
14 Z. Zhang, A. Nichols, J. X. Tang, Y. Han and J.-Y. Tang, Tetrahedron
Lett., 1999, 40, 2095–2098.
15 J.-Y. Tang, Z. Han, J. X. Tang and Z. Zhang, Org. Process Res. Dev.,
2000, 4, 194–198.
16 A. Hantzsch and M. Wolvekamp, Justus Liebigs Ann. Chem., 1904,
331, 265–297.
17 J. D. Pera, US Pat., 2 816 136, 1957; J. P. Fackler and D. Coucovanis,
J. Am. Chem. Soc., 1966, 88, 3913–3920; W. A. Thaler and J. R.
McDivitt, J. Org. Chem., 1971, 36, 14–18; C. J. Burchell, S. M. Aucott,
H. L. Milton, A. M. Z. Slawin and J. D. Woolins, Dalton Trans., 2004,
369–374.
18 A. R. Butler and Ch. Glidewell, J. Chem. Res. (S), 1982, 65; A. R.
Butler and Ch. Glidewell, J. Chem. Res. (M), 1982, 801–815.
19 J. Goerdeler and H. Lu¨dke, Chem. Ber., 1970, 103, 3393–3406.
20 L. A. Spurlock and P. E. Newallis, J. Org. Chem., 1968, 33, 2073–
2076.
6H, 2 × NCH3), 4.48 (q, J 7.2, 2H, OCH2), 8.57 (bs, 1H, NH). 13
C
NMR (CDCl3, 125 MHz) d 13.8, 42.3, 43.6, 68.0, 179.3, 186.5.
m/z (ESI) 191.0299 (M − H+. C6H11N2OS2 requires 191.0307).
Reaction of 10 with triphenyl phosphine (2d) (31P NMR study).
3-Amino-1,2,4-thiaselenazole-5-thione (10) (21 mg, 106 lmol) was
dissolved in 2 ml of methanol-d4 and 1 ml of DMSO-d6. Triphenyl
phosphine (2d) (28 mg, 107 lmol) in 1 ml of methanol-d4 was
added and a 31P NMR spectrum was recorded after 2 hours. The
spectrum contained two singlets belonging to triphenyl phosphine
sulfide (43.2 ppm; in accordance with ref. 35) and triphenyl
phosphine selenide (35.5 ppm; in accordance with refs. 35,36) in
the ratio 1 : 0.07.
21 A. Hordvik, Acta Chem. Scand., 1963, 17, 2575–2592.
22 W. C. Davies and W. P. G. Lewis, J. Chem. Soc., 1934, 1599–1604.
23 P. D. Bartlett and G. Meguerian, J. Am. Chem. Soc., 1956, 78, 3710–
3715.
Acknowledgements
The authors acknowledge the financial support from the Ministry
of Education, Youth and Sports of the Czech Republic (project
no. MSM 002 162 7501), EPSRC and Avecia Biotechnology.
24 C. D. Hall, B. R. Tweedy, R. Kayhanian and J. R. Lloyd, J. Chem. Soc.,
Perkin Trans. 2, 1992, 775–779.
25 W. A. Henderson, Jr. and C. A. Streuli, J. Am. Chem. Soc., 1960, 82,
5791–5794.
26 D. D. Perrin, B. Dempsey and E. P. Serjeant, pKa Prediction for Organic
Acids and Bases, Chapman and Hall, London, 1981.
27 B. Kempf and H. Mayr, Chem.–Eur. J., 2005, 11, 917–927.
28 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb,
J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C.
Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci,
M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M.
Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.
Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E.
Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo,
R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi,
C. Pomelli, J. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P.
Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D.
Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K.
Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S.
Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz,
I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y.
Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. G. Johnson,
W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, GAUSSIAN 03
(Revision B.4), Gaussian, Inc., Pittsburgh, PA, 2003.
29 A. D. Becke, Phys. Rev. A, 1988, 38, 3098–3100; C. Lee, W. Yang and
R. G. Parr, Phys. Rev. B, 1988, 37, 785–789; A. D. Becke, J. Chem.
Phys., 1993, 98, 5648–5652.
References
1 F. Eckstein and G. Gish, Trends Biochem. Sci., 1989, 14, 97–100; G.
Zon and W. J. Stec, in Oligonucleotides and Analogues: A Practical
Approach, ed. F. Eckstein, IRL Press, Oxford, 1991, pp. 87–108; P.
Iversen, Anti-Cancer Drug Des., 1991, 6, 539–568; P. C. Zamecnik, in
Prospects for Antisense Nucleic Acid Therapy for Cancer and AIDS,
ed. E. Wickstrom, Wiley Liss, New York, 1991, pp. 1–6; S. Agrawal,
Trends Biotechnol., 1992, 10, 152; C. K. Mirabelli and S. T. Crooke, in
Antisense Research and Applications, ed. S. T. Crooke and B. Lebleu,
CRC,Ann Arbor, MI, 1993, pp. 7–35 and references cited therein.
2 S. T. Crooke and C. F. Bennett, Annu. Rev. Pharmacol. Toxicol., 1996,
36, 107–129; D. A. Braasch and D. R. Corey, Biochemistry, 2002, 41,
4503–4510.
3 E. Uhlmann and A. Peyman, Chem. Rev., 1990, 90, 544–583; W.-Y.
Gao, F.-S. Han, C. Storm, W. Egan and Y.-C. Cheng, Mol. Pharmacol.,
1992, 41, 223–229; R. W. Wagner, Nature, 1994, 372, 333–335; J.-P.
Bongartz, A.-M. Aubertin, P. G. Milhaud and B. Lebleu, Nucleic Acids
Res., 1994, 22, 4681–4688.
4 J. F. Milligan and O. C. Uhlenbeck, Biochemistry, 1989, 28, 2849–2855;
M. Koziolkiewicz and W. J. Stec, Biochemistry, 1992, 31, 9460–9466;
M. J. Moore and P. A. Sharp, Nature, 1993, 365, 364–368.
5 P. C. J. Kamer, H. C. P. F. Roelen, H. van den Elst, G. A. van der Marel
and J. H. van Boom, Tetrahedron Lett., 1989, 30, 6757–6760.
6 R. P. Iyer, L. R. Phillips, W. Egan, J. B. Regan and S. L. Beaucage,
J. Org. Chem., 1990, 55, 4693–4699.
7 H. Vu and B. L. Hirschbein, Tetrahedron Lett., 1991, 32, 3005–3008.
8 M. V. Rao, C. B. Reese and Z. Zhao, Tetrahedron Lett., 1992, 33, 4839–
4842.
30 A. Schafer, H. Horn and R. Ahlrichs, J. Chem. Phys., 1992, 97, 2571–
2577.
31 S. Miertus, E. Scrocco and J. Tomasi, Chem. Phys., 1981, 55, 117–129;
M. Cossi, G. Scalmani, N. Rega and V. Barone, J. Chem. Phys., 2002,
117, 43–54.
32 A. E. Reed, L. A. Curtis and F. Weinhold, Chem. Rev., 1988, 88, 899–
926.
9 W. J. Stec, B. Uznanski and A. Wilk, Tetrahedron Lett., 1993, 33, 5317–
5320.
33 E. N. Walsh, J. Am. Chem. Soc., 1959, 81, 3023–3026.
34 J. E. Oliver, R. T. Brown and N. L. Redfearn, J. Heterocycl. Chem.,
1972, 9, 447–449.
35 N. Burford, B. W. Royan, E. v. H. Spence and R. D. Rogers, J. Chem.
Soc., Dalton Trans., 1990, 2111–2117.
36 M. Bollmark and J. Stawinski, Chem. Commun., 2001, 771–772.
10 M. V. Rao and K. Macfarlane, Tetrahedron Lett., 1994, 35, 6741–6744.
11 V. A. Efimov, A. L. Kalinkina, O. G. Chakhmakhcheva, T. S. Hill and
K. Jayaraman, Nucleic Acids Res., 1995, 23, 4029–4033.
12 Q. Xu, K. Musier-Forsyth, R. P. Hammer and G. Barany, Nucleic Acids
Res., 1996, 24, 1602–1607.
484 | Org. Biomol. Chem., 2007, 5, 478–484
This journal is
The Royal Society of Chemistry 2007
©