10.1002/anie.202109312
Angewandte Chemie International Edition
COMMUNICATION
Keywords: Pd-catalysis • alkenes difunctionalizations•
hypervalent iodine • dioxygenation • enantioselectivity • alkenols
[1]
a) Z. Wu, M. Hu, J Li, W. Wu, H. Jiang, Org. Biomol. Chem., 2021,19,
3036–3054; b) S. R. Chemler, M. T. Bovino, ACS Catal. 2013, 3(6),
1076–1091; c) J. Lin, R.-J. Song, M. Hu, J.-H. Li, Chem. Rec. 2019, 2-
3, 440-451; d) Y. Shimizu, M. Kanai, Tetrahedron Letters, 2014, 55,
3727–3737.
[2]
a) G. Yin, X. Mu, G. Liu, Acc. Chem. Res. 2016, 49, 11, 2413–2423; b)
G. Broggini, T. Borelli, S. Giofre, A. Mazza, Synthesis, 2017, 49, 2803–
2818. For difunctionalizations involving C-N and C-O/X bonds, see: c)
L. V. Desai, M. S. Sanford, Angew. Chem. Int. Ed. 2007, 46, 5737 –
5740; d) E. J. Alexanian, C. Lee, E. J. Sorensen, J. Am. Chem. Soc.
2005, 127, 7690-7691; e) D. V. Liskin, P. A. Sibbald, C. F. Rosewall,
F. E. Michael, J. Org. Chem. 2010, 75, 6294–6296; f) H. Zhu, P. Chen,
G. Liu, Org. Lett. 2015, 17, 1485−1488, g) S. Chen, T. Wu, G. Liu, X.
Zhena, Synlett, 2011, 7, 891–894; h) S. D. R. Christie, A. D.
Warrington, C. J. Lunniss, Synthesis 2009, 1, 148–154; i) A. D. Manick,
G. Duret, D. N. Tran, F. Berhal, ì G. Prestat, Org. Chem. Front., 2014,
1, 1058–1061; j) C. Chen, P. Chen, G. Liu, J. Am. Chem. Soc. 2015,
137, 15648–15651. For difunctionalizations involving C-O and C-O/X
bonds, see: k) J. R. McCombs, B. W. Michel, M. S. Sigman, J. Org.
Chem. 2011, 76, 9, 3609–3613; l) N. Hu, K. Li, Z. Wang, W Tang,
Angew.Chem. Int. Ed. 2016, 55,5044 –5048; m) B. A. Hopkins, Z. J.
Garlets, J. P. Wolfe, Angew.Chem.Int. Ed. 2015, 54,13390–13392.
a) X. Li, P. Chen, G. Liu, Beilstein J. Org. Chem. 2018, 14, 1813–1825;
b) J. H. Lee, S. Choi, K. B. Hong, Molecules 2019, 24, 2634–2657; c)
M. Fujita, M. Wakita, T. Sugimura, Chem. Commun., 2011, 47, 3983–
3985.
Scheme 4. Proposed mechanism for the alkoxyacyloxylation process starting
from substrates 1.
In addition, the ester functionality inserted in the morpholines,
offers the possibility of further transformations, including
hydrolysis and oxidation of the alcohol to afford enantioenriched
or diastereopure β-aminoacids,[19] as well as important
intermediates for natural products synthesis, such as (+)-
centrolobine.[20]
[3]
[4]
[5]
B., Tian, P., Chen, X. Leng, G. Liu. Nat Catal, 2021, 4, 172–179.
a) S. Giofrè, E. M. Beccalli, F. Foschi, C. La Rosa, L. Lo Presti, M. S.
Christodoulou, Synth. 2019, 51, 3462–3470; b) F. Foschi, C. Loro, R.
Sala, J. Oble, L. Lo Presti, E. M. Beccalli, G. Poli, G. Broggini, Org.
Lett. 2020, 22, 1402–1406; c) G. Broggini, E. M. Beccalli, T. Borelli, F.
Brusa, S. Gazzola, A. Mazza, Eur. J. Org. Chem. 2015, 4261–4268; d)
G. Broggini, V. Barbera, E. M. Beccalli, U. Chiacchio, A. Fasana, S.
Galli, S. Gazzola, Adv. Synth. Catal. 2013, 355, 1640 – 1648; e) G.
Broggini, V. Barbera, E. M. Beccalli, E. Borsini, S. Galli, G. Lanza, G.
Zecchi, Adv. Synth. Catal. 2012, 354, 159 – 170.
Scheme 5. Synthetic applications of the chiral morpholine and pyran nuclei
obtained,
In conclusion, we described a useful and mild procedure for
the synthesis of enantioenriched acyloxy-substituted morpholines
and pyrans using (aza)-alkenols as starting materials. The
reaction makes use of a Pd-catalyst in oxidative conditions, in
combination with the new generation of C-6 modified Pyox ligands.
The use of uncommon hypervalent iodines was also crucial to
afford an enhanced enantioselectivity and reactivity. The process
was completely exo-regioselective, starting from both achiral and
chiral substrates. The achievement of intermediates important for
natural products synthesis and peptide synthesis increases the
synthetic utility of this method.
[6]
[7]
S. Gazzola, E. M. Beccalli, T. Borelli, C. Castellano, D. Diamante, G.
Broggini, Synlett 2018, 29, 503–508
a) X. Qi, C. Chen, C. Hou, L. Fu, P. Chen, G. Liu, J. Am. Chem. Soc.
2018, 140, 7415–7419; b) C. Hou, P. Chen, G. Liu, Angew. Chemie -
Int. Ed. 2020, 59, 2735–2739; c) X. Li, X. Qi, C. Hou, P. Chen, G. Liu,
Angew. Chemie - Int. Ed. 2020, 59, 17239–17244; d) C. Chen, P. M.
Pflüger, P. Chen, G. Liu, Angew. Chemie - Int. Ed. 2019, 58, 2392–
2396.
[8]
a) K. H. Jensen, T. P. Pathak, Y. Zhang, M. S. Sigman, J. Am. Chem.
Soc. 2009, 131, 17074–17075; b) K. H. Jensen, J. D. Webb, M. S.
Sigman, J. Am. Chem. Soc. 2010, 132, 49, 17471–17482; c) K.
Takenaka, Y. D. Dhagea, H. Sasai, Chem. Commun., 2013, 49,
11224–11226.
Acknowledgements
Università degli Studi di Milano is acknowledged for financial
support.
[9]
D. Chen, I. A. Berhane, S. R. Chemler, Org. Lett. 2020, 22, 7409-7414.
a) J. Schlüter, M. Blazejak, F. Boeck, L. Hintermann, Angew. Chemie
Int. Ed. 2015, 54, 4014–4017; b) W.-B. Xie, Z. Li, ACS Catalysis, 2021,
11(10), 6270-6275.
[10]
Conflict of interest
[11]
K. Ebisawa, K. Izumi, Y. Ooka, H. Kato, S. Kanazawa, S. Komatsu, E.
Nishi, H. Shigehisa, J. Am. Chem. Soc. 2020, 142, 13481−13490.
The authors declare no conflict of interest.
4
This article is protected by copyright. All rights reserved.