J. Am. Chem. Soc. 2000, 122, 9391-9395
9391
Synthesis and Biological Evaluation of a Focused Mixture Library of
Analogues of the Antimitotic Marine Natural Product Curacin A
Peter Wipf,*,§ Jonathan T. Reeves,§ Raghavan Balachandran,† Kenneth A. Giuliano,‡
Ernest Hamel, and Billy W. Day*,†
Contribution from the Department of Chemistry, UniVersity of Pittsburgh, Pittsburgh, PennsylVania 15260,
Department of EnVironmental and Occupational Health, and Department of Pharmaceutical Sciences,
UniVersity of Pittsburgh, Pittsburgh, PennsylVania 15238, Cellomics, Inc., Pittsburgh, PennsylVania 15238,
and Screening Technologies Branch, DeVelopmental Therapeutics Program, DiVision of Cancer Treatment
and Diagnosis, National Cancer Institute, Frederick Cancer Research and DeVelopment Center,
Frederick, Maryland 21702
ReceiVed June 21, 2000
Abstract: The marine natural product curacin A served as the lead compound for the combinatorial synthesis
of 6-compound mixture libraries. Fluorous trapping with a vinyl ether tag was used to streamline purification
of the heterogeneous multicomponent reaction products and provide chemically clearly defined mixtures. The
screening profile of one mixture library, 17mix, was attractive enough to warrant the re-synthesis of the individual
compounds, and an evaluation of their biological effects validated the composite data previously obtained on
the product mixture. The most active of these compounds inhibited tubulin polymerization with an IC50 of ca.
1 µM, showed an average growth inhibition activity GI50 of ca. 250 nM, inhibited [3H]colchicine binding to
tubulin, and blocked mitotic progression at nanomolar concentrations. These compounds represent some of
the most potent synthetic curacin A analogues identified to date but have simplified structures, greater water
solubility, and increased chemical stability.
Introduction
Natural products remain a significant source of promising
lead structures for drug development.1 In recent years, an
expansion of the structural diversity pool by preparation of
libraries of natural products or natural product-like molecules
has become a major focus of combinatorial chemistry.2 After
completion of the total synthesis of the strongly antimitotic
Lyngbya majuscula metabolite curacin A in 1996,3 we remained
intrigued by the impressive antiproliferative profile4 of this
marine natural product and the potential to use it as a scaffold
for the development of novel tubulin polymerization inhibitors.5,6
Curacin A promotes arrest of the cell cycle at the G2/M
checkpoint and competitively inhibits the binding of [3H]-
colchicine to tubulin, and it can therefore be considered a
colchicine site agent.5,7 In addition to a large number of total
syntheses of curacin A,8 the attractive biological properties of
this compound have led to numerous analogue studies. However,
even minor changes in the structure of curacin A can lead to
essentially inactive derivatives (Figure 1).7,9 Critical issues for
further pharmaceutical development of any sufficiently active
analogue are increases in chemical stability and hydrophilicity
and improved availability versus the natural product. Curacin
* To whom correspondence should be addressed.
§ Department of Chemistry, University of Pittsburgh.
† Department of Environmental and Occupational Health, and Department
of Pharmaceutical Sciences, University of Pittsburgh.
‡ Cellomics, Inc.
National Cancer Institute.
(6) For recent evaluations of small-molecule antimitotic agents, see: (a)
Haggarty, S. J.; Mayer, T. U.; Miyamoto, D. T.; Fathi, R.; King, R. W.;
Mitchison, T. J.; Schreiber, S. L. Chem. Biol. 2000, 7, 275. (b) Owa, T.;
Okauchi, T.; Yoshimasa, K.; Sugi, N. H.; Ozawa, Y.; Nagasu, T.; Koyanagi,
N.; Okabe, T.; Kitoh, K.; Yoshino, H. Bioorg. Med. Chem. Lett. 2000, 10,
1223. (c) Uckun, F. M.; Mao, C.; Vassilev, A. O.; Navara, C. S.; Narla, K.
S.; Jan, S.-T. Bioorg. Med. Chem. Lett. 2000, 10, 1015.
(7) Verdier-Pinard, P.; Lai, J.-Y.; Yoo, H.-D.; Yu, J.; Marquez, B.; Nagle,
D. G.; Nambu, M.; White, J. D.; Falck, J. R.; Gerwick, W. H.; Day, B. W.;
Hamel, E. Mol. Pharmacol. 1998, 53, 62.
(8) (a) White, J. D.; Kim, T.-S.; Nambu, M. J. Am. Chem. Soc. 1995,
117, 5612. (b) Hoemann, M. Z.; Agrios, K. A.; Aube´, J. Tetrahedron Lett.
1996, 37, 953. (c) Ito, H.; Imai, N.; Takao, K.; Kobayashi, S. Tetrahedron
Lett. 1996, 37, 1799. (d) Onoda, T.; Shirai, R.; Koiso, Y.; Iwasaki, S.
Tetrahedron Lett. 1996, 37, 4397. (e) Lai, J.-Y.; Yu, J.; Mekonnen, B.;
Falck, J. R. Tetrahedron Lett. 1996, 37, 7167. (f) White, J. D.; Kim, T.-S.;
Nambu, M. J. Am. Chem. Soc. 1997, 119, 103. (g) Hoemann, M. Z.; Agrios,
K. A.; Aube´, J. Tetrahedron 1997, 53, 11087. (h) Muir, J. C.; Pattenden,
G.; Ye, T. Tetrahedron Lett. 1998, 39, 2861.
(1) (a) Cragg, G. M.; Newman, D. J.; Snader, K. M. J. Nat. Prod. 1997,
60, 52. (b) Shu, Y.-Z. J. Nat. Prod. 1998, 61, 1053. (c) Nicolaou, K. C.;
Vourloumis, D.; Winssinger, N.; Baran, P. S. Angew. Chem., Int. Ed. 2000,
39, 44.
(2) (a) Tan, D. S.; Foley, M. A.; Shair, M. D.; Schreiber, S. L. J. Am.
Chem. Soc. 1998, 120, 8565. (b) Nicolaou, K. C.; Winssinger, N.;
Vourloumis, D.; Oshima, T.; Kim, S.; Pfefferkorn, J.; Xu, J.-Y.; Li, T. J.
Am. Chem. Soc. 1998, 120, 10814. (c) Meseguer, B.; Alonso-Diaz, D.;
Griebenow, N.; Herget, T.; Waldmann, H. Angew. Chem., Int. Engl. 1999,
19, 2902.
(3) Wipf, P.; Xu, W. J. Org. Chem. 1996, 61, 6556.
(4) (a) Verdier-Pinard, P.; Sitachitta, M.; Rossi, J. V.; Sackett, D. L.;
Gerwick, W. H.; Hamel, E. Arch. Biochem. Biophys. 1999, 370, 51. (b)
Gerwick, W. H.; Proteau, P. J.; Nagle, D. G.; Hamel, E.; Blokhin, A.; Slate,
D. J. Org. Chem. 1994, 59, 1243.
(5) For a review of agents that interact with the mitotic spindle, see:
Jordan, A.; Hadfield, J. A.; Lawrence, N. J.; McGown, A. T. Med. Res.
ReV. 1998, 18, 259-296.
10.1021/ja002213u CCC: $19.00 © 2000 American Chemical Society
Published on Web 09/19/2000