Table 1 (continued )
Entry ArX
2
Yield (%) R2
R3
Conditionsa Indole
3
Yield (%)
11
12
13
2i
80c
Me
Me
C
3i
96
2i
CO2H Me
C
3j
100
2i
2i
CO2Et Me
B
C
3k
3l
97
75
14
(CH2)5
a
b
c
Conditions: A, aq. HCl (35%), EtOH; B, TFA; C, aq. HCl (35%), AcOH. Esterification occurs during reaction. Phenylmagnesium chloride
used in metalation step.
(Scheme 2, Table 1). A variety of acidic conditions were
investigated (Table 1), but the most generally applicable were
the use of concentrated hydrochloric acid in ethanol at 70 1C,
although in some cases the use of acetic acid as solvent, or the
use of neat TFA was found to be superior (Table 1). Indoles
bearing a broad range of substituents were readily obtained by
this method, the meta-chloro-substituted hydrazide 2f giving,
as expected,28 only the 6-chloroindole 3f. Likewise, the
hydrazone derived from hydrazide 2g gave a single indole
product 3g.
7 N. Okamoto, Y. Miwa, H. Minami, K. Takeda and R. Yanada,
Angew. Chem., Int. Ed., 2009, 48, 9693.
8 S. Wurtz, S. Rakshit, J. J. Neumann, T. Droge and F. Glorius,
Angew. Chem., Int. Ed., 2008, 47, 7230.
9 R. Bernini, G. Fabrizi, A. Sferrazza and S. Cacchi, Angew. Chem.,
Int. Ed., 2009, 48, 8078.
10 Z. H. Guan, Z. Y. Yan, Z. H. Ren, X. Y. Liua and Y. M. Liang,
Chem. Commun., 2010, 46, 2823.
11 W. Q. Yu, Y. F. Du and K. Zhao, Org. Lett., 2009, 11, 2417.
12 D. R. Stuart, M. Bertrand-Laperle, K. M. N. Burgess and
K. Fagnou, J. Am. Chem. Soc., 2008, 130, 16474.
13 E. Fischer and F. Jourdan, Ber. Dtsch. Chem. Ges., 1883, 16,
2241.
The advantages of this new variation of the classical Fischer
indole synthesis, incorporating the previously little used reaction
of Grignard reagents with azodicarboxylate electrophiles as a
key step, lie in its simplicity and versatility. Haloarenes are
appealing and readily available starting materials, and obviate
the need to prepare aryl hydrazines from anilines by the oft
problematic diazotisation–reduction sequence, simultaneously
avoiding undesirable anilines such as naphthylamines. These
features combine to make this an attractive and highly
practical alternative modern protocol for the synthesis of the
fundamentally important indole ring system.
14 B. Robinson, The Fischer Indole Synthesis, John Wiley & Sons Inc.,
1982.
15 S. Wagaw, B. H. Yang and S. L. Buchwald, J. Am. Chem. Soc.,
1999, 121, 10251.
16 M. Wolter, A. Klapars and S. L. Buchwald, Org. Lett., 2001, 3,
3803.
17 H. Mitchell and Y. Leblanc, J. Org. Chem., 1994, 59, 682.
18 J. S. Yadav, B. V. S. Reddy, G. Veerendhar, R. S. Rao and
K. Nagaiah, Chem. Lett., 2002, 318.
19 J. P. Demers and D. H. Klaubert, Tetrahedron Lett., 1987, 28,
4933.
20 B. S. Gerstenberger, M. R. Rauckhorst and J. T. Starr, Org. Lett.,
2009, 11, 2097.
21 R. Velarde-Ortiz, A. Guijarro and R. D. Rieke, Tetrahedron Lett.,
1998, 39, 9157.
22 T. Uemura and N. Chatani, J. Org. Chem., 2005, 70, 8631.
23 K. Kisseljova, O. Tsubrik, R. Sillard, S. Maeorg and U. Maeorg,
Org. Lett., 2006, 8, 43.
We thank the University of Nottingham and QGenta
Inc. for support. C. J. M. is a scientific cofounder of, and
stockholder in, QGenta Inc.
24 K. Muniz and A. Iglesias, Angew. Chem., Int. Ed., 2007, 46, 6350.
25 P. Knochel, W. Dohle, N. Gommermann, F. F. Kneisel, F. Kopp,
T. Korn, I. Sapountzis and V. A. Vu, Angew. Chem., Int. Ed., 2003,
42, 4302.
26 I. Sapountzis, H. Dube, R. Lewis, N. Gommermann and
P. Knochel, J. Org. Chem., 2005, 70, 2445.
27 L. Shi, Y. Y. Chu, P. Knochel and H. Mayr, J. Org. Chem., 2009,
74, 2760.
28 D. W. Ockenden and K. Schofield, J. Chem. Soc., 1957, 3175.
Notes and references
1 R. J. Sundberg, The Chemistry of Indoles, Academic Press, 1970.
2 R. J. Sundberg, Indoles, ed. O. Meth-Cohn, Academic Press, 1996.
3 G. W. Gribble, J. Chem. Soc., Perkin Trans. 1, 2000, 1045.
4 S. Cacchi and G. Fabrizi, Chem. Rev., 2005, 105, 2873.
5 S. Patil and J. K. Buolamwini, Curr. Org. Synth., 2006, 3, 477.
6 L. Zhou and M. P. Doyle, J. Org. Chem., 2009, 74, 9222.
c
790 Chem. Commun., 2011, 47, 788–790
This journal is The Royal Society of Chemistry 2011