10782 J. Am. Chem. Soc., Vol. 122, No. 44, 2000
Fellows et al.
Scheme 1
rings could be formed by RCM reactions.11 We envisioned that
the diene 8 would be derived from the diol 9, which in turn
would be prepared from commercially available 5-nitrovanillin
(10). Because it has been shown that numerous prochiral diols
may be efficiently enzymatically desymmetrized,12 the inter-
mediacy of 9 afforded the significant opportunity of preparing
1 in optically pure form.
Results and Discussion
First Generation Approach. Having set forth the basic route
to FR900482 in Scheme 1, we still needed to identify the precise
tactics that would eventuate in the successful completion of the
synthesis. In addition to exploring new chemistry, one of our
goals was to develop an efficient approach to 1 that could be
applied to the practical synthesis of analogues for biological
testing. Toward this end, it would be essential to minimize
unproductive refunctionalization and protecting maneuvers, and
after analyzing various possibilities, we concluded that the
prochiral diol 15 could be most quickly transformed into the
natural product according to our general plan.
Hence, commercially available 5-nitrovanillin (10) was de-
methylated using HBr/HOAc to provide an intermediate diphe-
nol, the dianion of which was selectively monobenzylated on
the more basic oxygen to give 11. The phenol 11 was converted
to the corresponding triflate 12, which underwent facile nu-
cleophilic aromatic substitution with NaCH(CO2Me)2 in DMF
to provide 13, together with small quantities (<5%) of aldehyde
addition product.13 Interestingly, we discovered that the choice
of solvent for this reaction proved crucial, for when THF was
used, nucleophilic addition to the aldehyde was competitive with
substitution of the triflate. The aldehyde moiety of 13 was then
protected as its dimethyl acetal to furnish 14. The ordering of
steps in converting 12 to 14 was critical as displacement of the
triflate by malonate anion after protection of the aldehyde as
the dimethyl acetal proceeded at a much slower rate and afforded
the substituted product in only about 60% yield.
toward 1 have been described,6 and although three total
syntheses of 1 have been reported,7,8 only one of these produced
enantiomerically pure material.9 Herein we summarize our own
efforts in the area that have culminated in a formal total synthesis
of racemic FR900482, and we also detail studies directed toward
a simple modification of the approach that leads to an enanti-
oselective synthesis of (+)-FR900482.
In developing our own approach to the synthesis of FR900482
(1), we viewed the keto aziridine 6 as a key intermediate that
would be accessible from the benzazocine 7 (Scheme 1). We
were intrigued by the possibility of exploiting a ring-closing
metathesis (RCM) reaction of the highly functionalized diene
8 for constructing the unsaturated eight-membered ring in 7.10
Indeed, we were the first to demonstrate that eight-membered
The reduction of the dimethyl malonate group to the desired
1,3-diol in 15 proved problematic, most likely because of the
acidity of the benzylic proton situated alpha to the two ester
functions. Indeed, the difficulty associated with reducing aryl
malonates is well-documented.14 For example, when 14 was
(4) For some examples, see: (a) Shimomura, K.; Masuda, K.; Nakamura,
T.; Mizota, T.; Mori, J. Cancer Res. 1988, 48, 5172-5177. (b) Fukuyama,
T.; Goto, S. Tetrahedron Lett. 1989, 30, 6491-6494. (c) Williams, R. M.;
Rajski, S. R. Tetrahedron Lett. 1992, 33, 2929-2932. (d) Hopkins, P. B.;
Woo, J.; Sigurdsson, S. T. J. Am. Chem. Soc. 1993, 115, 1199-1200. (e)
Hopkins, R. B.; Williams, R. M.; Rajski, S. R.; Huang, H. Tetrahedron
Lett. 1994, 35, 9669-9672. (f) Hopkins, P. B.; Pratum, T. K.; Huang, H.
J. Am. Chem. Soc. 1994, 116, 2703-2709. (g) Hopkins, P. B.; Paz, M. M.
J. Am. Chem. Soc. 1997, 119, 5999-6005. (h) Williams, R. M.; Rollins, S.
B.; Rajski, S. R. Chem. Biol. 1997, 4, 127-137. (i) Williams, R. M.; Rajski,
S. R. J. Am. Chem. Soc. 1998, 120, 2192-2193. (j) Paz, M. M.; Sigurdsson,
S. T.; Hopkins, P. B. Bioorg. Med. Chem. 2000, 8, 173-179.
(5) For an excellent review see: Williams, R. M.; Rajski, S. R. Chem.
ReV. 1998, 98, 2723-2795.
(6) (a)Williams, R. M.; Yasuda, N. Tetrahedron Lett. 1989, 30, 3397-
3400. (b) Rapoport, H.; Jones, R. J. J. Org. Chem. 1990, 55, 1144-1146.
(c) Danishefsky, S. J.; McClure, K. F. J. Org. Chem. 1991, 56, 850-853.
(d) Danishefsky, S. J.; McClure, K. F. J. Am. Chem. Soc. 1993, 115, 6094-
6100. (e) Martin, S. F.; Wagman, A. S. Tetrahedron Lett. 1995, 36, 1169-
1170. (f) Grubbs, R. H.; Miller, S. J.; Kim, S. H.; Chen, Z. R. J. Am. Chem.
Soc. 1995, 117, 2108-2109. (g) Lim, H. J.; Sulikowski, G. A. Tetrahedron
Lett. 1996, 30, 5243-5246. (h) Ziegler, F. E.; Belema, M. J. Am. Chem.
Soc. 1997, 622, 1083-1094. (i) Mithani, S.; Drew, D. M.; Rydberg, E. H.;
Taylor, N. J.; Mooibroek, S.; Dmitrienko, G. I. J. Am. Chem. Soc. 1997,
119, 1159-1160. (j) Williams, R. M.; Rollins, S. B.; Judd, T. C. Tetrahedron
2000, 56, 521-532. (k) Zhang, W.; Wang, C.; Jimenez, L. S. Synth.
Commun. 2000, 30, 351-366.
(9) (a) Terashima, S.; Katoh, T.; Itoh, E.; Yoshino, T.; Hashimoto, M.;
Nagata, Y. Tetrahedron 1997, 53, 10229-10238. (b) Terashima, S.; Katoh,
T.; Itoh, E.; Yoshino, T.; Hashimoto, M.; Nagata, Y. Tetrahedron 1997,
53, 10239-10252. (c) Terashima, S.; Katoh, T.; Itoh, E.; Yoshino, T.;
Nagata, Y.; Nakatani, S. Tetrahedron 1997, 53, 10253-10270. (d) Katoh,
T.; Terashima, S. J. Synth. Org. Chem., Jpn. 1997, 55, 946-957.
(10) For reviews of RCM, see: (a) Grubbs, R. H.; Miller, S. J.; Fu, G.
C. Acc. Chem. Res. 1995, 28, 446-452. (b) Blechert, S.; Schuster, M.
Angew. Chem. Int. Ed. Engl. 1997, 36, 2036-2056. (c) Armstrong, S. K.
J. Chem. Soc., Perkin Trans. 1 1998, 371-388. (d) Grubbs, R. H.; Chang,
S. Tetrahedron 1998, 54, 4413-4450. (e) Schrock, R. R. Tetrahedron 1999,
55, 8141-8153. (f) Phillips, A. J.; Abell, A. D. Aldrichimica Acta 1999,
32, 75-89.
(11) (a) Martin, S. F.; Liao, Y.; Wong, Y.; Rein, T. Tetrahedron Lett.
1994, 35, 691-694. (b) Martin, S. F.; Liao, Y.; Chen, H.-J.; Pa¨tzel, M.;
Ramser, M. Tetrahedron Lett. 1994, 35, 6005-6008. (c) Martin, S. F.; Chen,
H. J.; Courtney, A. K.; Liao, Y.; Pa¨tzel, M.; Ramser, M. N.; Wagman, A.
S. Tetrahedron 1996, 52, 7251-7164. See also: (d) Martin, S. F.;
Humphrey, J. M.; Ali, A.; Hillier, M. C. J. Am. Chem. Soc. 1999, 121,
866-867.
(12) For reviews on enzymatic transformations see: (a) Azerad, R. Bull.
Soc. Chim. Fr. 1995, 132, 17-51. (b) Drauz, D.; Waldmann, H. Enzyme
Catalysis in Organic Synthesis; VCH and Weinheim: New York, 1995.
(c) Johnson, C. R.; Schoffers, E.; Golebiowski, A. Tetrahedron 1996, 52,
3769-3826.
(13) Atkinson, J. G.; Wasson, B. K.; Fuentes, J. J.; Griard, T.; Rooney,
C. S. Tetrahedron Lett. 1979, 31, 2857-2860.
(14) For example, see: Choi, Y. M.; Emblidge, R. W. J. Org. Chem.
1989, 54, 1198-1200.
(7) Fukuyama, T.; Xu, L.; Goto, S. J. Am. Chem. Soc. 1992, 114, 383-
384.
(8) Danishefsky, S. J.; Schkreyantz, J. M. J. Am. Chem. Soc. 1995, 117,
4722-4723.