Communication
ChemComm
Table 3 Further investigations on the catalystsa
Notes and references
1 (a) T. J. Boltje, T. Buskas and G.-J. Boons, Nat. Chem., 2009, 1, 611;
(b) P. Collins and R. Ferrier, Monosaccharides: Their Chemistry and
´
Their Roles in Natural Products, Wiley, 1995; (c) E. Jequier, Am. J. Clin.
Nutr., 1994, 59, 682S–685S; (d) A. Varki, Glycobiology, 2017, 27, 3–49.
2 G. J. Boons and K. J. Hale, Organic Synthesis with Carbohydrates, 2008.
3 S. S. Kulkarni, C.-C. Wang, N. M. Sabbavarapu, A. R. Podilapu,
P.-H. Liao and S.-C. Hung, Chem. Rev., 2018, 118, 8025–8104.
4 (a) B. O. Fraser-Reid, K. Tatsuta and J. Thiem, Glycoscience: Chemistry
and Chemical Biology, Springer Berlin Heidelberg, Berlin, Heidelberg,
Berlin, Heidelberg, 2008; (b) R. Mahrwald, Chem. Commun., 2015, 51,
13868–13877.
5 (a) W. H. Binder, R. H. Prenner and W. Schmid, Tetrahedron, 1994, 50,
749–758; (b) J. Gao, R. Haerter, D. M. Gordon and G. M. Whitesides,
J. Org. Chem., 1994, 59, 3714–3715; (c) A. Palmelund and R. Madsen,
J. Org. Chem., 2005, 70, 8248–8251; (d) M. Draskovits, C. Stanetty,
I. R. Baxendale and M. D. Mihovilovic, J. Org. Chem., 2018, 83,
2647–2659.
Entry Starting material Catalyst 1ab [%] 3b [%] 4ab [%] Sumb [%]
1
2
3
4
1a
1a
1a
1a
2
17
18
19
5
0
22
37
13
0
5
56
80
59
36
73
80
86
79
5
6 (a) E. Fischer, Ber. Dtsch. Chem. Ges., 1889, 22, 2204–2205;
(b) H. Kiliani, Ber. Dtsch. Chem. Ges., 1885, 18, 3066–3072.
7 A. Wohl, Ber. Dtsch. Chem. Ges., 1893, 26, 730–744.
8 R. N. Monrad and R. Madsen, Tetrahedron, 2011, 67, 8825–8850.
9 A. J. Arduengo, R. L. Harlow and M. Kline, J. Am. Chem. Soc., 1991,
113, 361–363.
a
Reaction conditions: 1a/precatalyst/K2CO3/5 = 1.00 : 0.25 : 0.20 : 2.00
b
(molar ratio), 20 min. Based on calibrated GC.
introducing again mesityl or diisopropylphenyl on one adjacent
nitrogen atom (precatalysts 18 and 19, respectively) did not lead
to a change in chemoselectivity, as seen in the thiazolium salt
series. Instead we observed a decrease in the conversion to
product 4a, indicating that the electronic properties of the
triazolium core dominate the steric effects (Table 3, entries 3
and 4). Again, the reaction with the most promising GC-yield was
repeated with MeCN as solvent under microwave irradiation,
giving lactone in a good isolated yield (5 mmol, upon acetylation,
see Scheme 4). With both the ideal substrate/catalyst combina-
tions it was attempted to decrease catalyst loading which leads to
a significant decrease in the conversion (see the ESI†).
In summary, we have delivered a clear proof of concept
for the principle feasibility of an NHC-controlled intercepted
dehomologation of semi-protected carbohydrate derivatives.
Herein, we present the first examples of substrate-dependent
and – more importantly – catalyst-controlled divergence between
selective intercepted dehomologation based on the retro-benzoin
reaction on the one hand and the subsequent b-elimination on the
other hand. Screening of our catalysts revealed the influence of
both steric and electronic properties of carbenes identifying the
first ideal substrate/catalyst combinations. Further studies on the
scope and limitations of the current methodology are in progress
and will deliver an increased understanding of and give rise to
more means of exploitation of the fascinating interaction between
NHCs and the aldoses’ aldehyde moieties.
10 M. N. Hopkinson, C. Richter, M. Schedler and F. Glorius, Nature,
2014, 510, 485.
11 (a) D. Enders, O. Niemeier and A. Henseler, Chem. Rev., 2007, 107,
5606–5655; (b) P.-C. Chiang and J. W. Bode, N-Heterocyclic Carbenes:
From Laboratory Curiosities to Efficient Synthetic Tools, The Royal Society
of Chemistry, 2011, pp. 399–435, , DOI: 10.1039/9781849732161-00399.
12 (a) X. Bugaut and F. Glorius, Chem. Soc. Rev., 2012, 41, 3511–3522;
(b) R. Breslow, J. Am. Chem. Soc., 1958, 80, 3719–3726.
13 (a) J. Read de Alaniz and T. Rovis, J. Am. Chem. Soc., 2005, 127,
6284–6289; (b) L. Baragwanath, C. A. Rose, K. Zeitler and
S. J. Connon, J. Org. Chem., 2009, 74, 9214–9217.
14 (a) H. Stetter, Angew. Chem., Int. Ed. Engl., 1976, 15, 639–647;
(b) A. T. Biju, N. Kuhl and F. Glorius, Acc. Chem. Res., 2011, 44,
1182–1195; (c) M. Padmanaban, A. T. Biju and F. Glorius, Org. Lett.,
2011, 13, 98–101; (d) C. J. Collett, R. S. Massey, O. R. Maguire,
A. S. Batsanov, A. C. O’Donoghue and A. D. Smith, Chem. Sci., 2013,
4, 1514–1522.
15 (a) K. P. Stockton, B. W. Greatrex and D. K. Taylor, J. Org. Chem.,
2014, 79, 5088–5096; (b) B. Kang, T. Sutou, Y. Wang, S. Kuwano,
Y. Yamaoka, K. Takasu and K.-i. Yamada, Adv. Synth. Catal., 2015,
357, 131–147.
16 S. Wendeborn, R. Mondiere, I. Keller and H. Nussbaumer, Synlett,
2012, 541–544.
17 (a) N. T. Reynolds, J. Read de Alaniz and T. Rovis, J. Am. Chem. Soc.,
2004, 126, 9518–9519; (b) K. Y.-K. Chow and J. W. Bode, J. Am. Chem.
Soc., 2004, 126, 8126–8127.
18 J. Zhang, C. Xing, B. Tiwari and Y. R. Chi, J. Am. Chem. Soc., 2013,
135, 8113–8116.
19 Y. Zhu, J. Zajicek and A. S. Serianni, J. Org. Chem., 2001, 66, 6244–6251.
20 A. Banchet-Cadeddu, A. Martinez, S. Guillarme, V. Parietti,
´
F. Monneaux, E. Henon, J.-H. Renault, J.-M. Nuzillard and
A. Haudrechy, Bioorg. Med. Chem. Lett., 2011, 21, 2510–2514.
21 M. Becker, F. Liebner, T. Rosenau and A. Potthast, Talanta, 2013,
115, 642–651.
22 (a) X. Bugaut, F. Liu and F. Glorius, J. Am. Chem. Soc., 2011, 133,
8130–8133; (b) C. G. Goodman and J. S. Johnson, J. Am. Chem. Soc.,
2014, 136, 14698–14701; (c) J. Mahatthananchai and J. W. Bode,
Chem. Sci., 2012, 3, 192–197.
We thank T. Blaukovitsch, N. Houszka, Ch. Lim, K. Obleser,
¨
M. Schiffrer, K. Schlogl and A. Trpisovsky for technical support.
The Austrian Science Fund FWF (Grant P 29138-N34) is grate-
fully acknowledged for financial support.
¨
23 I. Piel, M. D. Pawelczyk, K. Hirano, R. Frohlich and F. Glorius,
Eur. J. Org. Chem., 2011, 5475–5484.
24 Noteworthily, analogous experiments with 3-O-Bn-galactose (probing
for the influence of the relative stereochemistry on the rate of the
elimination in the redox-lactonisation) gave results closely resembling
ones from the gluco-derivative 1a [data not shown].
25 D. Enders, K. Breuer, U. Kallfass and T. Balensiefer, Synthesis, 2003,
1292–1295.
Conflicts of interest
There are no conflicts to declare.
This journal is ©The Royal Society of Chemistry 2019
Chem. Commun., 2019, 55, 12144--12147 | 12147