1282 J ournal of Medicinal Chemistry, 2002, Vol. 45, No. 6
Vlieghe et al.
(12) Dournon, E.; Matheron, S.; Rozenbaum, W.; Gharakhalnian, S.;
Michon, C.; Girard, P. M.; Perronne, C.; Salmon, D.; De Truchis,
P.; Leport, C.; Bouvet, E.; Dazza, M. C.; Levacher, M.; Regnier,
B. Effects of zidovudine in 365 consecutive patients with AIDS
of AIDS-related complex. Lancet 1988, 2, 1297-1302.
(13) Yarchoan, R.; Broder, S. Anti-retroviral therapy of AIDS and
related disorders: general principles and specific development
of dideoxynucleotides. Pharmacol. Ther. 1989, 40, 329-348.
(14) Furman, P. A.; Fyfe, J . A.; St. Clair, M. H.; Weinhold, K.;
Rideout, J . L.; Freeman, G. A.; Nusinoff-Lehrman, S.; Bolognesi,
D. P.; Broder, S.; Mitsuya, H.; Barry, D. W. Phosphorylation of
3′-azido-3′-deoxythymidine and selective interaction of the 5′-
triphosphate with HIV reverse transcriptase. Proc. Natl. Acad.
Sci. U.S.A. 1986, 83, 8333-8337.
(15) Hao, Z.; Cooney, D. A.; Hartman, N. R.; Perno, C. F.; Fridland,
A.; De Vico, A. L.; Sarngadharan, M. G.; Broder, S.; J ohns, D.
G. Factors determining the activity of 2′,3′-dideoxynucleosides
in suppressing human immunodeficiency virus in vitro. Mol.
Pharmacol. 1988, 34, 431-435.
(16) Balzarini, J .; De Clercq, E. Nucleoside and nonnucleoside reverse
transcriptase inhibitors active against HIV. In Textbook of AIDS
Medicine; Merigan, T. C., Bartlett, J . G., Bolognesi, D., Eds.;
Williams and Wilkings: Baltimore, MD, 1999; pp 815-847.
(17) Cheng, Y. C.; Dutschman, G. E.; Bastow, K. F.; Sarngadharan,
M. G.; Ting, R. Y. C. HIV reverse transcriptase. General
properties and its interactions with nucleoside triphosphate
analogs. J . Biol. Chem. 1987, 262, 2187-2189.
(18) Richman, D. D.; Fischl, M. A.; Grieco, M. H.; Gottlieb, M. S.;
Volberding, P. A.; Laskin, O. L.; Leedom, J . M.; Groopman, J .
E.; Mildvan, D.; Hirsch, M. S.; J ackson, G. G.; Durack, D. T.;
Nusinoff-Lehrman, S. The toxicity of azidothymidine (AZT) in
the treatment of patients with AIDS and AIDS-related complex.
A double blind, placebo-controlled trial. N. Engl. J . Med. 1987,
317, 192-197.
(19) Pe´rigaud, C.; Gosselin, G.; Imbach, J . L. Potentialite´s et ap-
plications the´rapeutiques d’analogues de nucle´osides (Potential-
ity and therapeutic applications of nucleoside analogues). Ann.
Inst. Pasteur/ Actual. 1992, 3 (3), 179-215.
(20) Pan-Zhou, X. R.; Cretton-Scott, E.; Zhou, X. J .; Xie, M. Y.;
Rahmani, R.; Schinazi, R. F.; Duchin, K.; Sommadossi, J . P.
Comparative metabolism of the antiviral dimer 3′-azido-3′-
deoxythymidine-P-2′, 3′-dideoxyinosine and the monomers Zi-
dovudine and Didanosine by rat, monkey, and human hepato-
cytes. Antimicrob. Agents Chemother. 1997, 41 (11), 2502-2510.
(21) Pan-Zhou, X. R.; Cretton-Scott, E.; Zhou, X. J .; Yang, M. X.;
Lasker, J . M.; Sommadossi, J . P. Role of human liver P450s and
cytochrome b5 in the reductive metabolism of 3′-azido-3′-deox-
ythymidine (AZT) to 3′-amino-3′-deoxythymidine (AMT). Bio-
chem. Pharmacol. 1998, 55, 757-766.
(22) Trapnell, C. B.; Klecker, R. W.; J amisdow, C.; Collins, J . M.
Glucuronidation of 3′-azido-3′-deoxythymidine (Zidovudine) by
human liver-microsomes. Relevance to clinical pharmacokinetic
interactions with Atovaquone, Fluconazole, Methadone, and
Valproic Acid. Antimicrob. Agents Chemother. 1998, 42, 1592-
1596.
(23) Chariot, P.; Drogou, I.; De Lacroix-Szmania, I.; Eliezer-Vanerot,
M. C.; Chazaud, B.; Lombes, A.; Schaeffer, A.; Zafrani, E. S.
Zidovudine-induced mitochondrial disorder with massive liver
steatosis, myopathy, lactic acidosis, and mitochondrial DNA
depletion. J . Hepatol. 1999, 30, 156-160.
(24) Larder, B. A.; Darby, G.; Richman, D. D. HIV with reduced
sensitivity to zidovudine (AZT) isolated during prolonged therapy.
Science 1989, 243, 1731-1734.
(25) Larder, B. A.; Kemp, S. D. Multiple mutations in HIV-1 reverse
transcriptase confer high-level resistance to zidovudine (AZT).
Science 1989, 246, 1155-1158.
(26) Kellam, P.; Boucher, C. A. B.; Larder, B. A. Fifth mutations in
HIV-1 reverse transcriptase contributes to the development of
high-level resistance to zidovudine. Proc. Natl. Acad. Sci. U.S.A.
1992, 89, 1934-1938.
(27) D’Aquilla, R. T. HIV-1 chemotherapy and drug resistance. Clin.
Diagn. Virol. 1995, 3, 299-316.
(28) De Clercq, E. Development of resistance of human immunode-
ficiency virus (HIV) to anti-HIV agents: how to prevent the
problem? Int. J . Antimicrob. Agents 1997, 9, 21-36.
(29) Ren, J .; Esnouf, R. M.; Hopkins, A. L.; J ones, E. Y.; Kirby, I.;
Keeling, J .; Ross, C. K.; Larder, B. A.; Stuart, D. I.; Stammers,
D. K. 3′-Azido-3′-deoxythymidine drug resistance mutations in
HIV-1 reverse transcriptase can induce long range conforma-
tional changes. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 9518-
9523.
(30) Li, X.; Chan, W. K. Transport, metabolism and elimination
mechanisms of anti-HIV agents. Adv. Drug Delivery Rev. 1999,
39, 81-103.
(31) Mansky, L. M.; Bernard, L. C. 3′-Azido-3′-deoxythymidine (AZT)
and AZT-resistant reverse transcriptase can increase the in vivo
mutation rate of human immunodeficiency virus type 1. J . Virol.
2000, 74, 9532-9539.
108.21 (2C ortho), 111.56 (C-5), 123.76 (C ipso), 136.14
(C-6), 144.08 (C para), 150.50 (C-2), 153.51 (2C meta), 162.48
(AZT-O2C-(CH2)2-CO2CO-Ph(OCH3)3), 164.47 (C-4), 168.94
(AZT-O2C-(CH2)2-CO2CO-Ph(OCH3)3), 171.72 (AZT-O2C-
(CH2)2-CO2CO-Ph(OCH3)3); MS (FAB+) 562 (M + H)+. Anal.
(C24H27N5O11) C, H, N.
K-Ca r r a geen a n -Su ccin a te Diester -AZT Con ju ga tes 3
a n d 3′. To a solution of κ-carrageenan (0.100 g, 0.245 mmol,
1 equiv for 3; 0.113 g, 0.276 mmol, 1 equiv for 3′; calculated
on the repeating disaccharidic unit) in anhydrous DMF (15 or
18 mL for 3 or 3′, respectively), under N2, was added dropwise
mixed anhydride 2 (0.172 g, 0.306 mmol, 1.25 equiv for 3; 1.550
g, 2.760 mmol, 10 equiv for 3′) in anhydrous DMF (10 mL).
The reaction mixture was stirred at 60 °C for 72 h and then
precipitated with 1-propanol (30 or 40 mL for 3 or 3′,
respectively), as is done for some polymers in solid-phase
synthesis. The precipitate was filtered on a Bu¨chner funnel
and washed with acetone, methanol, dichloromethane, and
acetone again to remove all the unbound products and the
byproducts. The conjugates were dried under vacuum to give
82 mg of conjugate 3 and 92 mg of conjugate 3′.
For conjugate 3, OD266 ) 0.1952, corresponding to (2.0 (
0.5) × 10-5 mmol of AZT covalently bound to 1 mg of
κ-carrageenan.
For conjugate 3′, OD266 ) 0.6608, corresponding to (6.8 (
0.5) × 10-5 mmol of AZT covalently bound to 1 mg of
κ-carrageenan.
Ack n ow led gm en t. This research was supported by
grants from LAPHAL Laboratories and PACA Regional
Council (P.V.). INSERM U-322 is acknowledged for
financial support and for antiviral testing of drugs
against HIV-1 (strain BRU). We thank Kristien Erven
for excellent technical assistance.
Refer en ces
(1) Barre´-Sinoussi, F.; Chermann, J . C.; Rey, F.; Nugeyre, M. T.;
Chamaret, S.; Gruest, J .; Dauguet, C.; Axler-Blin, C.; Brun-
Ve´zinet, F.; Rouzioux, C.; Rozenbaum, W.; Montagnier, L.
Isolation of a T-lymphotropic retrovirus from a patient at risk
for Acquired Immune-Deficiency Syndrome (AIDS). Science
1983, 220, 868-871.
(2) Montagnier, L.; Dauguet, C.; Axler, C.; Chamaret, S.; Gruest,
J .; Nugeyre, M. T.; Rey, F.; Barre´-Sinoussi, F.; Chermann, J . C.
A new type of retrovirus isolated from patients presenting with
lymphadenopathy and AIDS: structural and antigenic related-
ness with equine infectious anemia virus. Ann. Inst. Pasteur/
Virol. 1984, 135E (1), 119-134.
(3) Gallo, R. C.; Salahuddin, S. Z.; Popovic, M.; Shearer, G. M.;
Kaplan, M.; Haynes, B. F.; Palker, T. J .; Redfield, R.; Oleske,
J .; Safai, B.; White, G.; Foster, P.; Markham, P. D. Frequent
detection and isolation of cytopathic retroviruses (HTLV-III)
from patients with AIDS and at risk of AIDS. Science 1984, 224,
500-503.
(4) Volsky, D. J .; Sakai, K.; Stevenson, M.; Dewhurst, S. Retroviral
etiology of the acquired immune deficiency syndrome (AIDS).
AIDS Res. 1986, 2 (Suppl. 1), S35-S48.
(5) De Clercq, E. Toward improved anti-HIV chemotherapy: thera-
peutic strategies for intervention with HIV infections. J . Med.
Chem. 1995, 38, 2491-2517.
(6) De Clercq, E. New developments in anti-HIV chemotherapy.
Farmaco 2001, 56, 3-12.
(7) Mitsuya, H.; Broder, S. Inhibition of the in vitro infectivity and
cytopathic effect of human T-lymphotropic virus, type III/
lymphadenopathy-associated virus (HTLV III/LAV) by 2′,3′-
dideoxynucleosides. Proc. Natl. Acad. Sci. U.S.A. 1986, 83,
1911-1915.
(8) De Clercq, E. In search of a selective antiviral chemotherapy.
Clin. Microbiol. Rev. 1997, 10, 674-693.
(9) Rando, R. F.; Nguyen-Ba, N. Development of novel nucleoside
analogues for use against drug resistant strains of HIV-1. Drug
Discovery Today 2000, 5, 465-476.
(10) Parang, K.; Wiebe, L. I.; Knaus, E. E. Novel approaches for
designing 5′-O-ester prodrugs of 3′-azido-2′,3′-dideoxythymidine
(AZT). Curr. Med. Chem. 2000, 7, 995-1039.
(11) Mitsuya, H.; Weinhold, K. J .; Furman, P. A.; St. Clair, M. H.;
Nusinoff-Lehrman, S.; Gallo, R. C.; Bolognesi, D. P.; Barry, D.
W.; Broder, S. 3′-Azido-3′-deoxythymidine (BWA509U): an agent
that inhibits the infectivity and cytopathic effect of human T-cell
lymphotropic virus type III/lymphadenopathy-associated virus
in vitro. Proc. Natl. Acad. Sci. U.S.A. 1985, 82, 7096-7100.