H. Hata et al. / Tetrahedron Letters 43 (2002) 6099–6102
6101
Scheme 4.
5. (a) Otaka, A.; Mitsuyama, E.; Watanabe, H.; Tama-
mura, H.; Fujii, N. Chem. Commun. 2000, 1081; (b)
Otaka, A.; Watanabe, H.; Yukimasa, A.; Oishi, S.;
Tamamura, H.; Fujii, H. Tetrahedron Lett. 2001, 42,
5443.
6. Kanai, M.; Percy, J. M. Tetrahedron Lett. 2000, 41,
2453.
7. Yamanaka, H.; Odani, Y.; Ishihara, T.; Gupton, J. T.
Tetrahedron Lett. 1998, 39, 6947.
8. (a) Kim, B. T.; Min, Y. K.; Asami, T.; Park, N. K.;
Kwon, O. Y.; Cho, K. Y.; Yoshida, S. Tetrahedron
Lett. 1997, 38, 1797; (b) Komatsu, Y.; Kitazume, T. J.
Fluorine Chem. 1998, 87, 101.
Compared with published methods, the present
defluorination route to a-fluoro-a,b-unsaturated
ketones has several advantages. The procedure for
selective defluorination is very simple; Mg metal as a
reducing agent is inexpensive and easily handled.14 Sim-
ple repetition of the defluorination procedures allowed
selective formation of the monofluorinated enones, with
high stereoselectivities in some cases. Trifluoromethyl
ketones were successfully transformed to a-fluoro-a,b-
unsaturated esters without the necessity to employ toxic
monofluoroacetates as a starting material. Thus, the
design of the reaction sequences involving CꢁF bond
cleavage enables the development of various practical
transformations, with potential biological and chemical
utility.
9. Chen, C.; Wilcoxen, K.; Kim, K.-I.; MaCarthy, J. R.
Tetrahedron Lett. 1997, 38, 7677.
10. (a) Ring-opening of a,b-epoxyketone with Et3N/3HF:
Todoroki, Y.; Hirai, N.; Ohigashi, H. Tetrahedron
1995, 51, 6911; (b) Fluoroolefination of b-ketoesters
with DAST: Bildstein, S.; Ducep, J.-B.; Jacobi, D.;
Zimmermann, P. Tetrahedron Lett. 1995, 36, 5007; (c)
O-Acetylation of a-fluoromalonaldehyde: Funabiki, K.;
Fukushima, Y.; Matsui, M.; Shibata, K. J. Org. Chem.
2000, 65, 606; (d) Electrochemical fluorination of b-
phenylsulfenyl-a,b-unsaturated ketones: Andres, D. F.;
Dietrich, U.; Laurent, E. G.; Marquet, B. S. Tetra-
hedron 1997, 53, 647.
Acknowledgements
The authors are grateful to the Ministry of Education,
Science, Culture, Sport, and Technology of Japan (No.
13555254 and 12450356) for financial support and SC-
NMR laboratory of Okayama University for 19F NMR
analysis.
11. Amii, H.; Kobayashi, T.; Hatamoto, Y.; Uneyama, K.
Chem. Commun. 1999, 1323.
References
12. A typical procedure: preparation and characterization
of monofluoroenones 5a. Chlorotrimethylsilane (0.26 g,
24 mmol) in freshly distilled THF (2.5 mL) and Mg
(0.12 g, 4.8 mmol) cooled down to 0°C under argon
atmosphere, 3a (160 mg, 0.6 mmol) was added drop-
wise and then stirred for additional 30 min. After evap-
oration of most of THF, hexane (20 mL) was added to
the residue, and the resulting salt was filtered and the
filtrate concentrated to give the crude product 4a.
Hydrochloric acid was added dropwise to the crude 4a
in Et2O and the mixture was stirred at room tempera-
ture for 30 min. Purification of the products by chro-
matography on silica gel (hexane/ether=25/1) provided
5a (98 mg, 72% from 3a) as a colorless solid. Mp 57°C;
IR (Nujol) 1658 cm−1 (wCO); 1H NMR (CDCl3, 200
1. Ojima, I.; McCarthy, J. R.; Welch, J. T. Biomedicinal
Frontiers of Fluorine Chemistry; ACS Symposium Series
639, ACS: Washington, DC, 1996.
2. Allmendinger, T.; Furet, P.; Hungerbu¨hler, E. Tetra-
hedron Lett. 1990, 31, 7297.
3. (a) Boros, L. G.; Corte, B. D.; Gimi, R. H.; Welch, J.
T.; Wu, Y.; Handschumacher, R. E. Tetrahedron Lett.
1994, 35, 6033; (b) Welch, J. T.; Lin, J. Tetrahedron
1996, 52, 291; (c) Lin, J.; Welch, J. T. Tetrahedron
Lett. 1998, 39, 9613; (d) Welch, J. T.; Allmendinger, T.
In Peptidomimetic Protocols; Kazmierski, W. M., Ed.
Fluoroolefin peptide isosteres; Humana Press: New
Jersey, 1999; pp. 375–384.
4. Abraham, R. J.; Ellison, S. L. R.; Schonholzer, P.;
Thomas, W. A. Tetrahedron 1986, 42, 2101.
3
MHz) l 6.87 (d, JFH=36.4 Hz, 1H), 7.4–7.8 (m, 8H),