Job/Unit: O30595
/KAP1
Date: 10-07-13 15:45:58
Pages: 12
Asymmetric Syntheses of (–)-Coniine and (–)-Solenopsin A
[2]
[15]
For a detailed investigation of the borohydride reduction of a
pyridinium salt to the corresponding tetrahydropyridine, see:
a) I. S. Young, A. Ortiz, J. R. Sawyer, D. A. Conlon, F. G.
Buono, S. W. Leung, J. L. Burt, E. W. Sortore, Org. Process
Res. Dev. 2012, 16, 1558; in the former reaction, the intermedi-
ary 1,2-dihydropyridine is protonated at C-3, and we do believe
that a similar process occurred in 4b during the formation of
α-amino nitrile 5. For a recent study of the protonation of 1,2-
dihydropyridines, see: b) S. Duttwyler, S. Chen, M. K. Takase,
K. B. Wiberg, R. G. Bergman, J. A. Ellman, Science 2013, 339,
678.
C. Patrascu, C. Sugisaki, C. Mingotaud, J.-C. Marty, Y. Génis-
son, N. Lauth-de Viguerie, Heterocycles 2004, 63, 2033.
The remarkable efficiency of this reaction sequence suggests
that 1,2-dihydropyridine 4b is stable in THF at temperatures
ranging from –50 to 0 °C. For the dimerization of 1,2-dihy-
dropyridine systems, see: a) K. Jakubowicz, Y.-S. Wong, A.
Chiaroni, M. Bénéchie, C. Marazano, J. Org. Chem. 2005, 70,
7782; b) J. E. Baldwin, L. Bischoff, T. D. W. Claridge, F. A.
Heupel, D. R. Spring, R. C. Whitehead, Tetrahedron 1997, 53,
2271.
For the nucleophilic addition to imine or iminium systems, see:
a) I. Bosque, J. C. González-Gómez, F. Foubelo, M. Yus, J.
Org. Chem. 2012, 77, 780; b) G. Satyalakshmi, K. Suneel, D. B.
Shinde, B. Das, Tetrahedron: Asymmetry 2011, 22, 1000; c) H.
Ren, W. D. Wulff, J. Am. Chem. Soc. 2011, 133, 5656; d) K.
Damodar, M. Lingaiah, N. Bhunia, B. Das, Synthesis 2011, 15,
2478; e) G. Arena, N. Zill, J. Salvadori, N. Girard, A. Mann,
M. Taddei, Org. Lett. 2011, 13, 2294; f) T. R. Wu, J. M. Chong,
J. Am. Chem. Soc. 2006, 128, 9646; g) N. Gommerman, P. Kno-
chel, Chem. Eur. J. 2006, 12, 4380; h) B. Kranke, H. Kunz,
Can. J. Chem. 2006, 84, 625; i) X. Wang, Y. Dong, J. Sun, X.
Xu, R. Li, Y. Hu, J. Org. Chem. 2005, 70, 1897; j) Y. Yamashita,
Y. Mizuki, S. Kobayashi, Tetrahedron Lett. 2005, 46, 1803; for
the nucleophilic addition to acyl pyridinium systems, see: k)
J. A. Bull, J. J. Mousseau, G. Pelletier, A. B. Charrette, Chem.
Rev. 2012, 2642; l) M. Á. Fernández-Ibánez, B. Maciá, M. G.
Pizzuti, A. J. Minnaard, B. L. Feringa, Angew. Chem. 2009,
121, 9503; Angew. Chem. Int. Ed. 2009, 48, 9339; m) F. Stazi,
D. Marcoux, J.-C. Poupon, D. Latassa, A. B. Charette, Angew.
Chem. 2007, 119, 5099; Angew. Chem. Int. Ed. 2007, 46, 5011.
[16]
[17]
[3]
For the cyclization of allylic alcohols, see: a) P. Mukherjee,
R. A. Widenhoefer, Org. Lett. 2011, 13, 1334; b) S. M. Hande,
N. Kawai, J. I. Uenishi, J. Org. Chem. 2009, 74, 244; for the
hydroamination/cyclization method, see: S. Hong, A. M. Ka-
waoka, T. J. Marks, J. Am. Chem. Soc. 2003, 125, 15878.
[18]
[19]
The optical rotation of (–)-5-A was also recorded in EtOH and
was found to be [α]2D2 = +5.0 (c = 1.0, EtOH). Because of an
epimerization process in this solvent, this optical rotation grad-
ually changed to the equilibrium value of [α]2D2 = +56 (c = 1.0,
EtOH).
For conformational preferences of tetrahydropyridines see:
A. M. Belostotskii, M. Shokhen, H. E. Gottlieb, A. Hassner,
Chem. Eur. J. 2001, 7, 4715.
[4]
[5]
F. Abels, C. Schneider, Synthesis 2011, 24, 4050.
a) S. G. Davies, A. M. Fletcher, D. G. Hughes, J. A. Lee, P. D.
Price, P. M. Roberts, A. J. Russel, A. D. Smith, J. E. Thomson,
O. M. H. Williams, Tetrahedron 2011, 67, 9975; b) J. Etxebar-
ria, J. L. Vicario, D. Badia, L. Carillo, Tetrahedron 2007, 63,
11421.
a) N. Cola, N. Mokhtari, J.-L. Vasse, J. Szymoniak, Org. Lett.
2011, 13, 6292; b) L. V. Adriaenssens, C. A. Austin, M. Gibson,
D. Smith, R. C. Hartley, Eur. J. Org. Chem. 2006, 4998; c) N.
Girard, L. Pouchain, J.-P. Hurvois, C. Moinet, Synlett 2006,
11, 1679; d) F. Glorius, N. Spielkamp, S. Holle, R. Goddard,
C. W. Lehman, Angew. Chem. 2004, 116, 2910; Angew. Chem.
Int. Ed. 2004, 43, 2850.
a) T. K. Beng, R. E. Gawley, J. Am. Chem. Soc. 2010, 132,
12216; b) I. Coldham, D. Leonori, J. Org. Chem. 2010, 75,
4069.
H. Nomura, C. J. Richards, Org. Lett. 2009, 11, 2892.
E. S. Sattelly, G. A. Cortez, D. C. Moebius, R. R. Schrock,
[20]
[21]
For a review of the chemistry of deprotonated α-amino nitriles,
see: T. Opatz, Synthesis 2009, 12, 1941.
3
For the deprotonation of 2-cyano-Δ -piperideines, see: a) P. Ji-
[6]
[7]
monet, D. S. Grierson, H.-P. Husson, Tetrahedron Lett. 1987,
28, 6179; b) S. A. Wolchenhauer, S. D. Rychnovsky, Tetrahe-
dron 2005, 61, 3371.
When hydrogenation of tetrahydropyridine (+)-10b was carried
out in the presence of 10% Pd/C, we obtained a mixture (80:20)
of (–)-coniine and (1-phenylethyl)-(1-propyl-1-pentyl)amine.
For the reductive cleavage of the N-1–C-6 bond of tetra-
hydropyridines, see: a) M. L. Bennasar, E. Zulaica, J. Bonjoch,
J. Bosch, Tetrahedron 1991, 47, 5507; b) L. Bernardi, E. Gand-
ini, A. Temperilli, Tetrahedron 1974, 30, 3447.
[22]
[8]
[9]
[23]
S. T. Lee, B. T. Green, K. D. Welch, J. A. Pfister, K. E. Panter,
Chem. Res. Toxicol. 2008, 21, 2061.
A. H. Hoveyda, J. Am. Chem. Soc. 2005, 127, 8526.
[24]
[25]
J. C. Craig, A. R. Pinder, J. Org. Chem. 1971, 36, 3648.
For a review of the synthesis of solenopsins, see: S. Leclercq,
D. Daloze, J.-C. Braekman, Org. Prep. Proced. Int. 1996, 28,
501; for the determination of the absolute configuration of so-
lenopsin A, see: S. Leclecq, L. Thirionet, F. Broeders, D. Da-
loze, R. Vander Meer, J. C. Braeckman, Tetrahedron 1994, 50,
8465.
For recent syntheses of solenopsin A, see: a) S. Mix, S. Blech-
ert, Adv. Synth. Catal. 2007, 349, 157; b) K. Leijondahl, L.
Borén, R. Braun, J.-E. Bäckvall, J. Org. Chem. 2009, 74, 1988.
P. Beak, W. J. Zajdel, D. B. Reitz, Chem. Rev. 1984, 84, 471.
The synthesis of solenopsin A was carried out through the li-
thiation–alkylation of N-Boc-2-undecylpiperidine with di-
methyl sulfate or iodomethane as the electrophiles. For details,
see: a) H. M. T. B. Herath, N. P. D. Nanayakkara, J. Hetero-
cycl. Chem. 2008, 45, 129; b) R. Kumareswaran, A. Hassner,
Tetrahedron: Asymmetry 2001, 12, 2269; c) T. J. Wilkinson,
N. W. Stehle, P. Beak, Org. Lett. 2000, 2, 155; d) M. T. Reding,
S. L. Buchwald, J. Org. Chem. 1998, 63, 6344; e) D. L. Comins,
N. R. Benjelloun, Tetrahedron Lett. 1994, 35, 829.
[10]
[11]
[12]
a) S. Hu, D. Tat, C. A. Martinez, D. R. Yazbeck, J. Tao, Org.
Lett. 2005, 7, 4329; b) M. Angoli, A. Barilli, G. Lesma, D.
Passarella, S. Riva, A. Silvani, B. Danieli, J. Org. Chem. 2003,
68, 9525.
a) B. Guilloteau-Bertin, D. Compère, L. Gil, C. Marazano,
B. C. Das, Eur. J. Org. Chem. 2000, 1391; b) E. Klegraf, M.
Follmann, D. Schollmeyer, H. Kunz, Eur. J. Org. Chem. 2004,
3346.
a) S. Shahane, F. Louafi, J. Moreau, J.-P. Hurvois, J.-L. Re-
naud, P. van de Weghe, T. Roisnel, Eur. J. Org. Chem. 2008,
4622; b) N. Girard, J.-P. Hurvois, C. Moinet, L. Toupet, Eur.
J. Org. Chem. 2005, 2269; c) F. Louafi, J. Moreau, S. Shahane,
S. Golhen, T. Roisnel, S. Sinbandhit, J.-P. Hurvois, J. Org.
Chem. 2011, 76, 9720.
a) T. M. Nguyen, M. R. Sanchez-Salvatori, J.-C. Wypych, C.
Marazano, J. Org. Chem. 2007, 72, 5916; b) D. Barbier, C. Mar-
azano, C. Riche, B. C. Das, P. Potier, J. Org. Chem. 1998, 63,
1767; c) D. Barbier, C. Marazano, B. C. Das, P. Potier, J. Org.
Chem. 1996, 61, 9596; d) C. D. Vanderwal, J. Org. Chem. 2011,
76, 9555, and references cited therein.
[26]
[27]
[28]
[13]
[14]
[29]
[30]
R. K. Dieter, G. Oba, K. R. Chandupatla, C. M. Topping, K.
Lu, R. T. Watson, J. Org. Chem. 2004, 69, 3076, and references
cited therein.
For an authoritative discussion of the formation and reactivity
of α-lithio N-alkylcarbamates, see: a) P. Beak, A. Basu, D. J.
Gallagher, Y. S. Park, S. Thayumanavan, Acc. Chem. Res. 1996,
a) E. M. Fry, J. Org. Chem. 1963, 28, 1869; b) E. M. Fry, J.
Org. Chem. 1964, 29, 1648; c) E. M. Fry, J. A. Beisler, J. Org.
Chem. 1970, 35, 2809; d) J. Bosch, M. Rubiralta, A. Domingo,
J. Bolos, A. Linares, C. Minguillón, M. Amat, J. Bonjoch, J.
Org. Chem. 1985, 50, 1516.
Eur. J. Org. Chem. 0000, 0–0
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
11